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Senescence is a complex process involving many variables including genetics, lifestyle factors, 
and chronic diseases, the interaction of which significantly influences the manner in which we 
age (2). In particular, hypertension and genes of the rennin-angiotensin-aldosterone system have 
been associated with functional and structural changes of the large arteries, which are thought to 
contribute to age-related increases in the incidence of cardiovascular disease. Despite mounting 
evidence implicating sedentary behavior as a significant risk factor in chronic-disease morbidity 
and mortality among the elderly, there is a limited amount of information on the role of exercise 
in promoting optimal health and function in older people (27). The purpose of the present 
review is to discuss the effects of exercise training and angiotensin-converting enzyme (ACE) 
on aortic stiffness in the elderly.  
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INTRODUCTION 
 
The high prevalence of hypertension in our society 
imposes a considerable public health issue; therefore, 
the prevention of hypertension is a major public health 
objective. Hypertension is a serious problem that 
increases the risk of aortic stiffness (77), which is 
thought to contribute to age-related increases in the 
incidence of cardiovascular disease (77). Arterial 
stiffness may predict coronary heart disease beyond 
classic risk factors. In a longitudinal study (14), the 
predictive value of arterial stiffness on coronary heart 
disease in patients with essential hypertension and 
without known clinical cardiovascular disease was 
assessed. It was found that measurements of arterial 
stiffness correlated significantly with those of 
endothelial function, mainly influenced by the 
relationship of the angiotensin converting enzyme (a 
key component in the rennin-angiotensin system) and 
bradykinin. Data show that different molecular 
mechanisms are responsible for the hypertension and 
aortic stiffness seen in elderly and in cardiac patients. 
Moreover, there is growing evidence for a genetic 

 
contribution to the pathophysiology of hypertension 
and aortic stiffness. In particular, genes of the rennin-  
angiotensin-aldosterone system have been associated 
with functional and structural changes of the large 
arteries, which are thought to contribute to age- related 
increases in the incidence of cardiovascular disease. 
Genetic studies may help us to understand the 
mechanisms underlying the involvement of the rennin-
angiotensin system in arterial regulation. There is 
mounting evidence implicating sedentary behavior as a 
significant risk factor in chronic-disease morbidity and 
mortality among the elderly, though there is a limited 
amount of information on the role of exercise in 
promoting optimal health and function in older people 
(27). The purpose of the present review is to discuss 
the effects of exercise training and angiotensin-
converting enzyme (ACE) on aortic stiffness in the 
elderly. 
 
Aging considerations  
 
Many cross-sectional studies have demonstrated a 
significant relationship between age and aortic 
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stiffness, although the age-related changes observed in 
peripheral arteries appear to be less marked (62). 
However, age is the main clinical determinant of the 
large artery stiffness seen in elderly persons with 
isolated systolic hypertension. This condition is 
characterized by fissuring and fracturing of the elastin 

protein, collagen proliferation, and calcium deposition, 
and is frequently associated with a widened and 
torturous aorta (69, 85). As large arteries dilate, wall 
tension and pulsatile stresses increase and exacerbate 

artery wall degeneration, thus initiating a feedback 
loop whereby increased hypertension leads to further 
degeneration (69). In response to a stress, the age-
related reduction in physiological reserves causes a 
loss of regulatory or homeostatic balance. This, 
combined with another consequence of age-related 
changes—an increased perception of effort associated 
with sub-maximal work—establishes a vicious cycle 
especially in patients unbeknown to the above. This 
vicious cycle leads to decreased exercise capacity, 
which results in an elevated perception of effort and 
subsequently causes avoidance of activity, resulting in 
an exacerbation of the age-related declines secondary 
to disuse. 
Age-related, environmental, and genetic factors are 
responsible for structural and functional changes of the 
arterial wall, leading to decreased elasticity and 
increased stiffness (52, 53, 82). Aging is also 
associated with structural and functional changes of 
the vessel wall, which result in decreased vascular 
distensibility and elevated arterial stiffness (4). There 
are several possible explanations for the influence of 

aging on the loss of elasticity of central arteries. The 
most likely explanation appears to be age-associated 
structural changes in the arterial wall, such as a 
decrease in elastin and an increase in collagen and 
connective tissues (90). The aorta stiffens during 
senescence, as indicated by an increase in arterial pulse 
wave velocity (45, 93). Pulse pressure, measured as 
the difference between systolic and diastolic blood 
pressure, rises markedly after the fifth decade due to 
arterial stiffening with age, which results in a 
progressive rise in systolic blood pressure and a fall in 

diastolic blood pressure as the elastic capacity of the 
aorta diminishes (31). Pulse pressure may be increased 

because of a larger forward pressure wave or an earlier 
or larger wave reflection (63). 
The Baltimore Longitudinal Study of Aging (93) found 
that aortic arterial-pulse wave velocity increased 
progressively with age in 50 healthy females from 26 
to 96 years old, in whom only modest age-related 
increases in blood pressure were observed. This is 
noteworthy since the elastic properties of arteries are 
not necessarily uniform (45). Aging has been reported 

to have different effects on the stiffness of peripheral 
(e.g., brachial and radial) and central arteries in men 
(71). This may increase cardiovascular morbidity and 

mortality because of an elevation of systolic blood 
pressure, which raises left ventricular afterload, and 
because of a decrease in diastolic blood pressure, 
which alters coronary perfusion (60, 82).  
 
Aortic stiffness considerations 
 
Arteries serve the dual purposes of conducting blood 

to the peripheral tissues and buffering the pressure 
pulsations that are a necessary accompaniment of 
intermittent ventricular pumping (64). Isolated systolic 
hypertension may increase arterial stiffness, especially 
in older subjects, but not peripheral artery stiffness, 
although the underlying mechanisms are somewhat 
unclear (7).  
Aortic elasticity is an important determinant of left 
ventricular performance and coronary blood flow. As a 
consequence of arterial stiffness, left ventricular 
workload is increased, and myocardial oxygen 
demand, leading at times to left ventricular 
hypertrophy (19, 88, 98), impairs ventricular relaxation 
(32, 47, 55), causing subendocardial ischemia in the 
presence or absence of coronary artery stenosis (53, 
97). In addition, when aortic stiffness is followed by 
significantly elevated afterload, end-diastolic filling 
pressure rises and diastolic dysfunction develops, 
presumably due to incomplete relaxation and impaired 
left ventricular filling (56, 57) 
It is well appreciated that the aorta is not only a 
conduit, but also plays an important role in regulating 
left ventricular performance, coronary blood flow, and 
normal arterial function throughout the entire 
cardiovascular system (49). Loss of vascular 
distensibility reduces the buffering function of the 
aorta and is manifested as elevated pulse pressure, 
which adds to load on the heart and likely damages the 
large and small vessels as well. Several studies have 
shown that disease states, aging, and pharmacological 
agents may alter the elastic properties of the aorta, and 
that stiffening of the aorta may be associated with an 
increased incidence of cardiovascular events (49).  
These effects may increase the susceptibility of the 

aging heart to ischemia and ventricular dysfunction. 
An increase in the stiffness of the large conduit vessel 
may represent either a cause or a consequence of 
endothelial dysfunction and may explain why elevated 
pulse pressure is a new cardiovascular risk factor (70).  
 
The rennin-angiotensin system 
 
Clinical and experimental studies have demonstrated a 
major role of the rennin-angiotensin system (RAS) in 
the functional and structural changes of the large 
arteries in hypertension. The RAS is important for 
regulating blood pressure and extracellular fluid. The 
concept of the RAS has recently evolved from a 
classical systemic endocrine system to the idea of local 
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RASs functioning in a paracrine manner, including in  
the vascular wall (81). Angiotensin-converting enzyme 
(ACE) is a key component in the RAS system, 
generating the vasoconstrictor angiotensin II, and 
degrading vasodilator kinins (22). ACE is widely 
expressed in human tissues, including skeletal muscle, 
and may play a metabolic role during exercise (41). 
Angiotensin II, the predominant biological product of 
RAS, has been known for its effects on metabolism 
(15) and is a recognized growth factor necessary for 
the hypertrophy of skeletal muscle in response to 
mechanical load (35). Most of its known physiological 
and pathophysiological activities are mediated through 
the angiotensin II type 1 receptor (AT1R), the 
dominant receptor in the cardiovascular system (36). 
Higher levels of ACE have been observed in human 
subjects with increased carotid wall thickness. Clinical 
and experimental pharmacological studies have shown 

that ACE inhibitors can prevent and/or beneficially 
affect hypertension-induced structural and functional 
alterations of the arterial wall independent of blood 
pressure changes (6). 
Growing evidence supports a role for the involvement 
of genetic factors in the development of hypertension 
and aortic stiffness. Recent genetic studies (5, 99) 
focused on the RAS and on the identification of RAS 
candidate genes. These studies may help us to 
understand the mechanisms underlying the 
involvement of RAS in arterial regulation. A 
functional polymorphism of the human ACE gene has 
been identified in which the absence (deletion - D 
allele) rather than the presence (insertion - I allele) of a 
287-bp Alu repeat element in intron 16 is associated 
with higher enzyme activity in both serum and tissue 
(25, 78), resulting in greater production of angiotensin 
II and aldosterone and a decreased half-life of 
bradykinin (5, 99). The polymorphism in the AT1R 
gene that has been most extensively studied is the 
A1166C variant. This polymorphism has been linked 
to enhanced physiological responses of angiotensin II 
resulting in increased vasoconstrictor activity (94). 
Because RAS activity plays a major role in the 
regulation of vascular tone, the ACE ID genotype 
associated with ACE activity could be a candidate 
gene for large-artery stiffness (92).  It has been 
suggested that in hypertensive but not normotensive 
subjects, the AT1R and ACE genotypes are involved 
in the regulation of aortic rigidity (1). The ACE 
genotype has been shown to affect exercise and 
glucose load responses (33). The AT1R genotype 
appears to predispose to favorable anthropometric and 
metabolic traits relative to cardiovascular risk (1), and 
has previously been associated with the development 
of hypertension and coronary disease.  
 
 
 

Exercise benefits 
 
There is increasing evidence that regular exercise 
training initiated as early as young adulthood, but even 
during old age, can result in a high level of activity, 
thereby influencing the aging process. Thus, it is 
appropriate to perceive physical activity as a medical 
prescription for the aging population (54). Regular 
physical activity is associated with reduced risk of 
cardiovascular disease (11). In the Baltimore 
Longitudinal Study of Aging (93), it was found that 
aortic arterial pulse wave velocity increases 
progressively, but that older adult males who 
performed endurance exercise on a regular basis 
demonstrated lower levels of aortic arterial pulse wave 
velocity than their sedentary peers did.  
Previous studies have reported that, in endurance 
athletes, arterial stiffness is decreased by prolonged 
endurance training (17, 43) while aortic distensibility 
is increased, particularly in those with the ACE II 
genotype. In addition, it has been found that 
moderately intense exercise as brief as 10 minutes in 
duration is needed to elicit a decrease in resting blood 
pressure; this may have potential benefits as a non-
pharmacological aid to hypertension (58). These 
effects represent an extracardiac adaptation to chronic 
prolonged training in athletes (92).  
Arterial compliance is an important therapeutic target 
in older individuals in whom stiffening of the proximal 
aortic blood flow is thought to underlie systolic 
hypertension and increased cardiac work. This 
indicates a positive association between systemic 
arterial compliance and fitness levels in healthy older 
people, and an inverse association between systemic 
arterial compliance and systolic blood pressure. These 
findings are consistent with either the acquisition of a 
more compliant circulation and lower blood pressure 
due to enhanced physical activity, or with the idea that 
a more compliant arterial circulation and lower blood 
pressure permit greater athletic performance (18). For 
healthy subjects between the ages of 25 and 65 years, 
there is an interactive effect between age and gender 
and an independent effect of physical training on 
peripheral vascular function (59). It was suggested that 
interventions to improve aerobic capacity alleviate the 
stiffening of the arterial tree that accompanies 
normative aging (93).  
 
Exercise in hypertension 
 
The relationship between arterial stiffness and 
hypertension is complex. Elastic artery stiffening, an 
age-related process, can be accelerated in the presence 
of hypertension. Hypertension may produce arterial 

stiffening by both functional and structural 
mechanisms. Therefore, the distending, or mean, 
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arterial pressure is an important confounder of 
measurements of arterial stiffness (62).   
Physical activity has been recommended for the 
prevention and treatment of hypertension (8, 30). A 
large body of data demonstrates that changes towards 
a more physically active lifestyle positively affect 
blood pressure response in both normotensive and 
hypertensive individuals (10, 34, 75).  A meta-analysis 
of longitudinal aerobic training studies (37) in mild 
essential hypertensive subjects demonstrates an 
average reduction in resting systolic and diastolic 
blood pressures of 10.8 and 8.2 mmHg, respectively 
(34). Therefore, participation in an exercise-training 
program may be viewed as a non-pharmacological 
approach for preventing and treating mild 
hypertension. 
Previous studies (37, 80) have shown that a supervised 
exercise program leads to a decrease in blood pressure 
in humans with essential arterial hypertension. Men in 
a high fitness group with resting systolic blood 
pressure above or equal to 140 mmHg had a lower 
death rate than their low-fitness, below-140-mmHg-
resting-systolic-pressure counterparts.  Nevertheless, 
even though a reduction in blood pressure due to 
exercise training was detected in normotensive and 
hypertensive patients, the magnitude of reduction in 
systolic and diastolic blood pressure at rest and during 
submaximal exercise was greater in hypertensive 
subjects (9, 16). 
How does physical activity produce a decrease in 
blood pressure in elderly and borderline hypertensive 
patients? The mechanisms responsible for the 
reduction in arterial pressure have not been 

investigated, although a reduction in sympathetic 
nerve activity resultant from exercise training has been 
suggested as a cause of lower arterial pressure (77). 
However, the lack of change in muscle sympathetic 
nerve activity after training indicates that the lower 
arterial pressure is unrelated to a reduction in central 
sympathetic outflow. The failure of muscle 
sympathetic nerve activity to change at rest with 
isometric training is also typically observed with either 
forearm or leg dynamic exercise training (76, 86). 
Therefore, reductions in sympathetic outflow to 
skeletal muscles do not appear to be a prerequisite to 
lower arterial pressure in humans. However, it cannot 
be excluded that sympathetic outflow to other vascular 
beds (e.g., visceral regions) may be reduced and may 
contribute to a reduction in arterial pressure at rest 
(77).  
Another possible mechanism for the reduction in 
arterial pressure is peripheral vascular adaptation. 
Aerobic and isometric exercises elicit marked 
increases in muscle sympathetic nerve activity and 
norepinephrine release. Thus, vascular sensitivity to 
norepinephrine may be decreased with aerobic and 
isometric training (46, 68).  

Exercise and arterial-ventricular coupling 
 
In healthy subjects, the arterial system and the left 
ventricle (LV) are closely matched to optimize left 
ventricular performance (20). The interaction between 
the arterial system and the left ventricle is referred to 
as arterial-ventricular coupling and is a central 
determinant of cardiovascular performance and energy 
(44). Age-related arterial stiffening is typically 
accompanied by changes in the left ventricle that 
exacerbate end-systolic chamber stiffness (44). These 
changes, aggravated by common disorders such as 
hypertension, may disrupt the coupling between the 
ventricle and the arterial system and reduce 
cardiovascular mechanic efficiency, cardiovascular 
reserve and exercise capacity (72). Resting arterial-
ventricular coupling is generally maintained within a 
range that maximizes the efficiency of the heart (67). 
However, the arterial-ventricular coupling changes 
during exercise, manifested by a decrease in the 
arterial-ventricular coupling index, due to a greater 
increase in the ventricular contractility than in the 
arterial load (67). Thus, arterial-ventricular interaction 
favors the maximization of left ventricle performance 
at the expense of energy efficiency in conditions of 
physiological stress.  
In older populations, however, this arterial-ventricular 
coupling index decreases to a lesser extent during 
exercise, possibly due to decreased arterial capacitance 
or lower cardiovascular reserve (67). Moreover, it has 
been reported that this change in arterial-ventricular 
coupling during exercise is additionally restricted by 
hypertension (21).  
The mechanisms that mediate the association between 
aging, hypertension and the impairment of arterial-
ventricular coupling are not yet completely 
understood. Nevertheless, it seems clear that these 
mechanisms differ in men and women. One previous 
study reported that women exhibit a greater age-
related increase in proximal aortic stiffness than men 
(96). Later, another study found that arterial load 
during exercise is higher in older than in younger 
women, but no age-differences were found in men 
(67). Recently, Chantler et al. (21) reported that 
hypertensive women had blunted arterial-ventricular 
coupling index responses during exercise, but that 
there were no differences between hypertensive and 
normotensive men.  
Although age-related arterial stiffness impairs arterial-
ventricular coupling, there is growing evidence 
suggesting that exercise training may play an 
important role in restoring mechanical efficiency. A 
previous study demonstrated that resting end-diastolic 
volume increased and the effective arterial load 
decreased after exercise training, thereby improving 
arterial-ventricular coupling (79). These data suggest 
that exercise training may improve arterial-ventricular 
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coupling by shifting from left ventricle efficacy to the 
optimization of ventricular mechanical efficiency.  
 
Exercise and ACE 
 
Angiotensin-converting enzyme (ACE) is a key 
component in the RAS system, generating the 
vasoconstrictor angiotensin II and degrading 
vasodilator kinins within cardiovascular tissue (22). 
ACE is widely expressed in human tissue, including 
the skeletal and cardiac muscles (41, 83), and may 
play a metabolic role during exercise (41). In the 
human ACE gene, an insertion/deletion gene 
polymorphism has been identified, characterized by 
the presence (Insertion, I allele) or absence (Deletion, 
D allele) of a fragment of 287 bp in the intron 16. In 
this polymorphism the D allele was found to be 
associated with higher plasma and tissue ACE activity 
in animals (24), healthy subjects (78) and athletes (13). 
In addition, Faure-Delanef (29) demonstrated that in 
centenarians the ACE DD genotype had much higher 
circulating ACE activity than the ID and II genotypes 
did. The increased ACE activity associated with the 
DD genotype may lead to enhanced production of 
angiotensin II (24), which is the predominant 
biological product of RAS that mediates many of the 
local effects of ACE on several tissues.  
Angiotensin II is a necessary factor in mediating 
vascular smooth muscle growth (41), and it has a 
direct hypertrophic effect on skeletal muscle (35). In 
addition, there is evidence that the ACE D allele is 
associated with ventricular hypertrophy (84) and 
increased left ventricular mass (28, 39, 68, 102). 
Angiotensin II also increases collagen production, 
perhaps by up-regulating TGF-β (100, 101). As a 
result, the increased ACE activity associated with the 
DD genotype may up-regulate the production of 
angiotensin II and TGF-β, favoring cellular 
hypertrophy and proliferation and synthesis of the 
extracellular matrix. Individuals with the DD genotype 
would therefore be more prone to vascular smooth 
muscle hypertrophy and would be at greater risk of 
arterial stiffness.     
Additional effects attributable to angiotensin II may 
involve the regulation of body fluid balance via 
increased aldosterone secretion. This in turn results in 
the retention of sodium and water, leading to increased 
venous return, larger end diastolic volume, and 
subsequently to an increase in stroke volume due to 
Starling's law. It has been demonstrated that after 
exercise training sodium excretion is significantly 
increased in the ACE II but not in the ID or DD 
individuals (42). Moreover, increases in sodium 
excretion were inversely associated with changes in 
diastolic blood pressure (42). Therefore, the lower 
ACE activity associated with the II genotype may up-
regulate sodium excretion, leading to lower venous 

return and stroke volume. The net result is lower 
diastolic blood pressure. However, a number of studies 
have shown no differences in the levels of rennin, 
angiotensin II or aldosterone between ACE 
insertion/deletion genotypes (29, 50). These data 
suggest that other mechanisms, parallel to angiotensin 
II, mediate the association between the ACE gene and 
cardiovascular tone.  
There is evidence suggesting that increased ACE 
activity leads not only to augmented production of 
angiotensin II, but also to a reduction in angiotensin 
(1-7) peptide, which is known to cause vasodilating 
effects (41). A recent study demonstrated that patients 
with hypertension who have the II genotype (lower 
ACE activity) have much higher circulating levels of 
angiotensin (1-7) than do those patients with 
hypertension who have the DD genotype (higher ACE 
activity) (40). Thus, it is conceivable that the ACE 
genotype positively contributes to vascular response to 
exercise by its involvement in the fine tuning of the 
levels of both angiotensin II and angiotensin (1-7).    
Another explanation for increased arterial 
distensibility following exercise may be the effect of 
ACE on endothelin-1 (ET-1), a potent vasoconstrictor 
peptide produced by vascular endothelial cells (65). It 
has been reported that systemic administration of an 

endothelin receptor antagonist significantly decreased 
systemic blood pressure and peripheral vascular 
resistance in healthy humans, strongly suggesting that 
endogenously generated ET-1 contributes to basal 
vascular tonus in humans (38). In animals, the 
enhanced response of angiotensin II in the vasculature 
is mediated by both an increased binding capacity for 
the hormone and facilitation of the ET-1 action (23). 
Furthermore, it has been reported that arterial stiffness 
was increased by an intra-arterial infusion of ET-1 and 
decreased by the administration of an ET-1 receptor 
antagonist (61, 95).These findings suggest that 
endogenous ET-1 also participates in the regulation of 
arterial stiffness. Therefore, individuals with the DD 
genotype may be more prone to develop arterial 
stiffness due to higher ACE activity and increased 
generation of ET-1. Indeed, it has been demonstrated 
that hypertensive subjects who are homozygous for 
deletion (DD) have significantly less endothelium-
dependent vasodilatation than subjects who were 
homozygous for insertion (II) and heterozygous (ID) 
(74).   
Environmental and genetic factors may also influence 
the magnitude of the effects of age on large artery 
stiffness. AT1 receptor genotypes may influence 
arterial aging in hypertensive subjects; this shows that 
the association between genotypes and arterial 
stiffness may manifest itself later in life (51). The 
explanation for decreased arterial stiffness following 
endurance and isometric training may be due to the 
improvement in endothelial function. The increased 
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exposure to shear stress on the vessels throughout the 
entire body by the systolic blood pressure response 
during aerobic and isometric exercises may up-
regulate the production of nitric oxide synthase and 
increase the release of endothelium-derived nitric 
oxide  (26, 48, 87, 89).  This is a potentially important 
effect because essential hypertension is associated with 
an impairment of endothelium-derived vasodilation 
related to nitric oxide production (73). During 
exercise, with the increased demand for oxygen by the 
working muscles, it is crucial to increase blood flow to 
the working muscles. Therefore, during exercise 
vascular smooth muscle tone plays a fundamental role 
in regulating blood pressure, blood flow, 
microcirculation, and other cardiovascular functions.  
The cellular and molecular mechanisms by which 
vascular smooth muscle contractility is regulated are 
not completely elucidated (91). It has been suggested 
that kinins may play a major role in the vasodilatation 
needed during exercise. Kinins are very potent 
vasodilating peptides that reduce blood pressure by 
lowering peripheral vascular resistance. Plasma and 
vascular kinins regulate and modulate the control of 
blood flow by the endothelium of vascular smooth 
muscles. The role of kinins in vasomotion is 
determined by the rate of peptides production by 
kininogenases and their degradation by kininases. 
ACE splits bradykinin into inactive fragments, thereby 
reducing the action of kinins. Therefore, acute 
increases in plasma kinin levels during exercise 
indicate that the metabolism of the peptides is fine-
tuned to the systemic or local metabolic demands (12, 
66). In addition, levels of growth-inhibitory kinins, 
induced by increased ACE activity, may act as a 
secondary mechanism by which the ACE genotype 
regulates left ventricular and vascular growth in 
response to exercise. Together, these findings suggest 
that the D allele (and thus higher tissue ACE activity) 
favors the development of aortic stiffness. 
Nevertheless, it is at present unclear whether subjects 
with hypertension and the DD genotype benefit more 
from exercise training than the respective subjects 
with either the ID or II genotype.  

Conclusions and recommendations  
These observations suggest that habitual low-to-
moderate-intensity exercise—30 minutes per day on 
most days of the week in activities such as walking, 
biking, running, and swimming—does not only elicit a 
favorable blood pressure response that contributes to 
healthy aging, but also may prevent or at the very least 
delay increased aging-associated stiffness in central 
arteries. The absence of evidence-based data on 
corresponding endurance-trained young adults 
precludes a conclusive assessment as to preventative 
efficacy.  However, the fact that aerobic and isometric 

training have proven effective in reversing or at least 
decelerating the age-related stiffening process and 
concomitant morbidity of central arteries by lowering 
arterial stiffness in aged normotensive subjects does 
suggest that both modes of exercise training may offer 
an effective non-pharmacological intervention for the 
prevention of hypertension, and could be a treatment 
for hypertensive adults. In addition to their 
preventative and rehabilitative properties, aerobic and 
isometric forearm exercises are easily available, simple 
to set-up, and easily and quickly performed. These 
advantages give them a competitive edge in the 
recruitment of elderly participants, their compliance 
with the prescribed training, and their retention in the 
program, thereby overcoming non-adherence to a 
regimen or, worse yet, dropping out of such programs 
altogether. These are problems that have notoriously 
hampered positive clinical outcomes of such programs, 
particularly for the elderly.  Furthermore, in being 
financially affordable, aerobic and isometric training 
programs may offer an inexpensive and effective 
therapeutic treatment to a large number of sedentary 
elderly people, as well as an inexpensive and effective 
preventative measure for chronic diseases in the public 
at large, with the goal of a longer, healthier life for 
everyone. 
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