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RESUMO 

A sobrecarga cardíaca tem um efeito determinante na modulação do fenótipo 

cardíaco. Em resposta a um aumento sustentado da carga, o coração desenvolve um 

conjunto de adaptações inicialmente compensatórias que visam normalizar a tensão 

imposta sobre a parede ventricular e garantir a perfusão de órgãos vitais. No entanto, 

se a tensão persistir de forma sustentada, poderá ocorrer uma resposta 

descompensatória, que poderá levar ao desenvolvimento de insuficiência cardíaca. 

Por sua vez, a sobrecarga cardíaca intermitente imposta pelo exercício físico induz um 

conjunto de adaptações compensatórias que parecem conferir proteção contra 

inúmeros estímulos deletérios. Neste sentido, o principal objetivo do presente trabalho 

foi verificar se o exercício físico crónico seria capaz de aumentar a tolerância cardíaca 

à sobrecarga de pressão aguda (estudos I e II) e crónica (estudo III). Adicionalmente, 

pretendeu-se  averiguar se a aplicação de um estímulo de natureza diferente à do 

exercício físico (estimulação com dobutamina), mas capaz de mimetizar algumas das 

suas características hemodinâmicas, nomeadamente a duração e magnitude da 

sobrecarga, poderia resultar igualmente num fenótipo cardioprotetor (estudo II). Os 

estudos I e II incidiram sobre o ventrículo esquerdo (VE) enquanto que o estudo III se 

debruçou sobre o ventrículo direito (VD). Os resultados destes estudos indicam que o 

exercício físico crónico previne a disfunção cardíaca induzida pela sobrecarga aguda 

de pressão, acompanhada por uma redução da lesão ultra-estrutural, da expressão da 

forma ativa da caspase-3 e do Nf-KB, bem como de menores níveis de dano 

oxidativo. A sobrecarga crónica intermitente induzida pela estimulação beta-

adrenérgica com dobutamina também protegeu o VE contra a sobrecarga aguda de 

pressão e mimetizou em vários aspectos o fenótipo protetor induzido pelo exercício 

físico. Relativamente à sobrecarga crónica contínua, os dados obtidos sugerem que o 
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precondicionamento com exercício físico, assim como o exercício realizado durante 

ou após o estabelecimento da sobrecarga crónica de pressão sobre o VD, previne a 

disfunção cardíaca e aumenta a sobrevida. Esta melhoria parece estar associada à 

normalização de alterações na cinética do cálcio e da transição da expressão da 

isoforma das cadeias pesadas de miosina alfa para beta, redução da ativação 

neurohumoral, deposição de colagénio e inflamação, preservação da funcionalidade 

mitocondrial e diminuição do dano oxidativo. Como conclusão geral, os resultados do 

presente estudo sugerem que o exercício físico crónico aumenta a tolerância à 

sobrecarga aguda e crónica de pressão, previne a disfunção e diminui a probabilidade 

de desenvolvimento de insuficiência cardíaca. 

 

Palavras Chave: exercício físico crónico; mecanismos de cardioprotecção; 

sobrecarga de pressão aguda e crónica; tolerância cardíaca. 
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ABSTRACT 

Cardiac overload is considered an important modulator of the cardiac phenotype. In 

response to sustained cardiac overload, the heart develops a series of compensatory 

adaptations in order to normalize wall stress and guarantee the perfusion of vital 

organs. However, this seems to be only a short-term solution once if the stress is 

sustained, a decompensatory response occurs and HF will develop. In contrast, the 

intermittent cardiac overload induced by exercise results in several compensatory 

adaptations that translate into an improved cardiac phenotype that provides cardiac 

protection against several cardiac insults. In this sense, the main purpose of the 

present work was to address whether exercise training could enhance the ability of the 

heart to support acute (studies I and II) and chronic (study III) pressure overload and 

thus, prevent cardiac dysfunction and failure. Additionally, we evaluated if a stimulus, 

other than exercise (dobutamine stimulation), but mimicking the duration and 

magnitude of the exercise-induced cardiac overload, could similarly induce a 

cardioprotective phenotype (study II). In studies I and II the focus was on the left 

ventricle (LV) while in study III it was on the right ventricle (RV). Our results show 

that exercise training may prevent cardiac dysfunction induced by acute pressure 

overload, an observation that was paralleled by reduced ultra-structural damage, 

decreased expression of the active form of caspase-3 and NF-kB, and lower levels of 

oxidative damage. Chronic intermittent overload by beta-adrenergic stimulation with 

dobutamine also protected against acute pressure overload induced injury, and 

mimicked several aspects of the cardioprotective phenotype induced by exercise 

training. Regarding chronic pressure overload, our findings indicate that exercise 

preconditioning, as well as exercise performed during or after the establishment of 

RV chronic pressure overload prevents dysfunction and enhances survival. This 
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improved outcome was associated with normalization of calcium handling 

disturbances, alpha to beta-MHC expression shift, decreased neurohumoral activation, 

collagen deposition and inflammation, and preserved mitochondrial function and 

oxidative damage. The overall conclusion of our work is that exercise training 

increases the tolerance to both acute and chronic pressure overload, and may prevent 

from cardiac dysfunction and failure.  

 

Key Words: Exercise training; mechanisms of cardioprotection; acute and chronic 

pressure overload; cardiac tolerance
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1. Introduction 

1.1. Modulation of cardiac phenotype by load   

The heart has a remarkable adaptive ability, allowing it to continuously adjust 

its function to different challenges imposed by diverse stimuli throughout the life span 

(95, 207, 241). In order to respond to these continuous challenges the heart can 

reversibly adapt its function by activating intracellular signaling cascades, mainly 

anchored in the beta-adrenergic system (242). Under prolonged demands, its ability to 

maintain cardiac function within a physiological/homeostatic range is limited by 

restricted boundaries, which when surpassed will result in a maladaptive phenotype. 

This can be illustrated by the chronic (but transient) elevation of workload imposed to 

the heart by exercise training or by the chronic (but sustained) overload imposed by a 

disease state (e.g. pulmonary or systemic hypertension, valve dysfunction). In both 

circumstances, the heart will develop hypertrophy, a compensatory adaptation thought 

to provide mechanical advantages as it normalizes wall stress and decreases oxygen 

consumption, but ultimately divergent fates will occur (73, 241). In fact, participation 

in regular exercise is related with the development of mild to moderate left ventricular 

hypertrophy accompanied by enhanced cardiac performance (18, 34, 169, 189, 215). 

Importantly, no signs of deterioration in cardiac function or occurrence of 

cardiovascular symptoms or events, were detected even after long periods of time (up 

to 17 years) of uninterrupted and intense training (206), though this is currently a 

topic of debate. On its turn, hypertrophy developed in response to an overloading 

disease setting is commonly recognized as a major independent risk factor for 

morbidity and mortality (153, 174) and strong data collectively provide evidence that 

modulating the hypertrophic growth of the heart ameliorates both left and right 

ventricular dysfunction (20, 52, 59, 73, 196, 272). Indeed, if the inciting stimulus is 
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not relieved, the initially compensatory hypertrophy progresses to heart failure (HF) 

through a series of molecular, cellular, and interstitial changes that remain poorly 

understood (60, 73, 172, 184, 241). The recognition of a continuous progression from 

compensated hypertrophy toward HF substantiates the interpretation of cardiac 

hypertrophy as an early therapeutic target (52, 73, 207). 

 

1.1.1. The duration and intensity of the stimuli as possible determinants 

of the divergent phenotypes 

The reason why certain stimuli promote an adaptive cardiac phenotype while 

others originate a maladaptive one remains unknown. For a long time, it has been 

considered that the duration of the overload was determinant, since physiological 

overloads such as exercise are intermittent, while pathological overloads such as 

hypertension are sustained (207). In order to address whether the maladaptive 

phenotype is determined by the nature of the stress rather than its duration, Perrino 

and collaborators (207) developed a mouse model of intermittent transverse aortic 

constriction (iTAC) that allowed to deliver pressure overload, transiently and 

reversibly. iTAC was induced for 90 minutes, two times per day,  which was the 

duration and frequency of the swimming protocol that was used to induce adaptive 

remodeling. Comparison of the resultant phenotypes revealed mild hypertrophy with 

preserved systolic function and fetal gene expression in the iTAC group that 

resembled the exercised group. Nevertheless, iTAC also developed diastolic and beta-

adrenergic dysfunction, cardiomyocyte apoptosis and vascular rarefaction (207). It 

was therefore proposed that it is the nature of the stimuli (physiological vs. 

pathological), and not its duration, the responsible for triggering maladaptation. 

However, the magnitude of the overload was not controlled in that experiment and 
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thus, the observed disturbances may fairly be a consequence of the cumulative 

damage induced by the severity of each episode of overload. Remarkably, it seems 

that exercise is not always favorable and may indeed be harmful if performed above 

certain limits. Recent human data suggest that the right ventricle (RV), but apparently 

not the left ventricle (LV) (206), may develop ventricular dysfunction, fibrosis and 

arrhythmias as a consequence of extreme exercise regimens (13, 42, 61, 141, 186, 

192, 261, 263). These effects may be the result of cumulative and consecutive 

prolonged bouts of exercise. Indeed, some studies show that extreme exercise such as 

marathon or ultra-marathon running is associated with transient RV dilation and 

dysfunction, as well as with the release of several biochemical markers of cardiac 

injury such as brain natriuretic peptide (BNP) and cardiac troponin T (186, 192, 201). 

The decline in cardiac function in response to prolonged acute intense exercise (150 

minutes at 80% of maximal oxygen consumption) has also been associated with 

decreased beta-adrenergic sensitivity in trained individuals (10). It is interesting to 

note that these alterations were reported in endurance athletes, who are the more 

susceptible athletes to the development of overtraining, a syndrome that results from 

an imbalance between excessively great volumes of training without sufficient rest 

and recovery between each exercise session, ultimately affecting athletic performance 

(166). Additionally, increased apoptotic markers, metalloproteinase (MMP)-9 activity 

and mitochondrial DNA damage were reported in the LV of rats after running a bout 

of exercise until exhaustion (treadmill running with 10% grade at a speed of 

30m/min) (107). The subsequent repetition of bouts inducing such alterations may 

induce cumulative damage.  For instance, it was shown that rats submitted to 

sustained intensive exercise training (16 weeks, 5 days/week, 60 min/day, 36 m/min) 

developed features of maladaptive remodeling in the RV such as cardiac fibrosis (and 
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elevated pro-fibrotic mediators), cardiac dysfunction and increased susceptibility to 

arrhythmia (13). Of note, these changes were reversed after cessation of exercise 

training. In another report, rats were submitted to 6 weeks of prolonged (stepwise 

increased, reaching a maximum of 2h20min per day in the 4th week) and intense 

exercise (35 m/min) (119). At the end, animals presented reduced exercise capacity 

and evidences of degeneration of the cardiomyocyte structure, such as myofilaments 

degradation, cellular swelling, appearance of peroxisomes, and decreased rate of 

oxidative phosphorylation (119). Whether these changes affected cardiac function is 

unknown since no hemodynamic data was presented. Also, strenuous exercise 

(90min/day at 26.8 m/min on a 15% slope treadmill, 5days/week, for 7 weeks) has 

been shown to induce cardiomyocyte growth with little or no growth adaptation of the 

capillary vasculature, as well as an increase in the average maximum distance from 

the capillary wall to the mitochondria of cardiomyocytes, possibly compromising 

oxygen delivery and diffusion (4, 5). In face of these evidences, its seems reasonable 

to speculate that the exercise benefits may be “dose-dependent”, with elevated 

“doses” of endurance exercise eventually leading to deleterious cardiac adaptations in 

the long term (77). These observations claim for confirmation with more studies in 

order to verify whether “too much of a good thing” is actually bad/deleterious (140). 

In the meantime, the amount and intensity of exercise to reach such potential 

“overdose” level is far from representing a threat for the great majority of the 

population since they do not even meet the minimal amount of exercise recommended 

by the guidelines (77). Altogether, these data suggest that cardiac adaptive or 

maladaptive phenotype can be a consequence of the severity and/or duration of the 

stimuli together with an improper recovery between exercise bouts. When the 

imposed stress is too severe or prolonged, the cells might not be able to recover  
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Figure 1- Progression from normal to adaptive and maladaptive remodeling. In response to an 
elevated workload, a series of compensatory adaptations are triggered in order to preserve myocardial 
structural and functional integrity. If the workload is sustained (e.g. induced by strenuous exercise or 
cardiac diseases) the initially balanced and adapted phenotype progressively develops structural and 
functional disturbances that lead to cardiac maladaptation and dysfunction.  

 

homeostasis, their integrity can be compromised and cellular death pathways might be 

favored, progressively contributing to maladaptation (40, 75, 137, 138, 171). Even the 

regenerative capacity recently recognized to the heart may be impaired in this 

situation, with cardiomyocyte death exceeding renewal, further compromising cardiac 

recovery (152, 170, 252). On its turn, if there is a perfect match between the stress 

demands and the cellular ability to cope with it, pro-survival pathways are 

preferentially activated and an improved homeostatic capacity (increased tolerance) 

can be attained (40). Thus, the cell’s lack of an appropriate recovery period, together 

with a progressive or sustained elevated functional demand, may be the main reason 
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why stimuli like hypertension or aortic stenosis (and also prolonged exercise) lead to 

cardiac dysfunction, whereas intermittent cardiac overloads during repeated shorter 

bouts of mild, moderate and intense exercise (and perhaps the early phases of 

increased pressure and volume overload) promote an adaptive phenotype. These ideas 

are illustrated in Figure 1. 

 

1.1.2. Mechanisms underlying cardiac adaptive and maladaptive 

remodeling 

Great efforts have been made to identify the basic mechanisms that 

differentiate adaptive from maladaptive remodeling in order to promote the former 

and avoid/modulate the latter. Cardiac remodeling is thought to encompass 

modifications at the level of cardiomyocyte, vascularity and extracellular matrix 

components of the myocardium (85, 115).  

 

1.1.2.1. Cardiomyocyte	
  

 The normal adult myocardium is composed of billions of cardiomyocytes 

which are characterized by structural and functional heterogeneity that becomes more 

obvious when the heart is challenged by demanding situations (170, 194, 204, 223). In 

response to the same amount of stimuli, some cardiomyocytes may experience 

significant homeostatic disruption and damage with subsequent elimination by 

cellular death processes when tolerance limits are exceeded [reviewed by references 

(53, 75, 259)]. Until a certain point, the heart compensates this loss with the formation 

of new cardiomyocytes (11, 62, 121, 122). The surviving cardiomyocytes may present 

an enhanced function, at least temporally, through a series of intrinsic compensatory 

adaptations. 
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1.1.2.1.1. Growth pathways 

The growth of cardiomyocytes is characterized by the activation of complex 

signaling pathways, some of which have been identified and associated to the 

development of an adaptive or maladaptive phenotype [reviewed by references (16, 

57, 74, 104)]. Activation of the insulin-like growth factor (IGF)-1/phosphoinositide 3-

kinase (PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) 

signaling pathway is considered a hallmark of adaptive growth of cardiomyocytes, 

typical from normal postnatal development or exercise training (16, 57, 129, 195). 

Growth factors such as IGF-1 and insulin bind to their membrane-bound tyrosine 

kinase receptors, activating PI3K (p110alpha), which phosphorylates 

phosphatidylinositol bisphosphate to create phosphatidylinositol triphosphate (57, 

127, 262). Phosphatidylinositol triphosphate activates Akt through its recruitment to 

the cell membrane and its phosphorylation at Thr308 and Ser473 by phosphoinositide-

dependent kinase-1 (PDK1) and mammalian target of rapamycin complex 2 

(mTORC2), respectively (36, 57). Akt then stimulates protein synthesis by activating 

mTOR and inhibiting glycogen synthase kinase (GSK) (36, 57). Activation or 

restoration of this pathway has been associated with enhanced contractile function and 

improved calcium kinetic (35, 76, 129, 176), enhanced angiogenesis, glucose uptake, 

proliferation and anti-apoptotic effect (17, 22, 36) and expression of genes such as 

GATA4, cardiac troponin I, and alpha-myosin heavy chain (22). Apparently, these 

benefits are only present when this pathway is transiently activated since long-term 

activation of IGF-1 or Akt lead to extensive cardiac hypertrophy, increased 

expression of atrial natriuretic peptide (ANP) and beta-myosin heavy chain, 

interstitial fibrosis and cardiac dysfunction (36, 50, 226).  

On its turn, the binding of hormones/vasoactive factors such as angiotensin (Ang) 
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II, endothelin- (ET) 1 and catecholamines to their receptors on the cardiomyocytes [G 

protein-coupled receptors (GPCR)], and sustained activation of the downstream 

intracellular signaling pathways, has been classically linked with maladaptive growth 

[reviewed by references (16, 57, 74, 104)]. Interestingly, exercise transiently increases 

cardiac expression of ET-1 (111) and circulating levels of catecholamines (84) but 

this does not result in maladaptation, further suggesting that sustained (but not 

intermittent) exposure may be a key factor. Of these pathways, the calcium–

calmodulin–dependent phosphatase calcineurin has been identified as a potent 

hypertrophic promoter as it seems to be sufficient, and in many cases necessary, to 

induce maladaptive growth and dysfunction (180). Data from human studies also 

support the involvement of calcineurin in the development of HF (155, 219). 

Calcineurin is triggered by the sustained elevation of intracellular calcium, for 

instance resultant from inositol triphosphate-mediated calcium release or from 

sarcoplasmic reticulum calcium-ATPase (SERCA2a) failure (57, 229, 262). Once 

activated, calcineurin dephosphorylates the nuclear factor of activated T cells 

(NFAT).  NFAT is normally hyperphosphorylated and sequestered in the cytoplasm, 

but is rapidly translocated to the nucleus after calcineurin-mediated 

dephosphorylation (16, 95, 127). In the nucleus, it is thought to trigger the expression 

of pro-hypertrophic genes usually associated with maladaptive remodeling. Genes 

specifically regulated by NFAT in cardiomyocytes are still under investigation (41) 

but NFAT3c, one of the five NFAT isoforms, was recently shown to directly increase 

the expression of the miR-23a, a pro-hypertrophic microRNA (156). This microRNA 

favors cardiomyocyte growth by suppressing the translation of the muscle specific 

ring finger protein 1 (MuRF1), which is an anti-hypertrophic factor (156). NFAT can 

also increase gene expression of ET-1 and BNP by interacting with other transcription 
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factors such as GATA4 (37, 183). Contrasting to pathological settings of HF, the 

calcineurin/NFAT pathway is not activated in response to growth hormone (GH)-

IGF-1 or exercise training-induced cardiac remodeling (262). Moreover, its inhibition 

was shown to be paralleled with improved cardiac function, supporting its 

involvement in maladaptation (127, 197).  

The reason why certain pathways seem to be preferentially activated in opposition 

to others in response to a stimulus remains intriguing. One possible explanation may 

be related with the magnitude of the overloading stimuli and to its impact on the 

overall population of cardiomyocytes, independently of the overloading cause. 

Cardiomyocytes are heterogeneous (194, 223), have distinct injury thresholds and 

thus their response may be conditioned by their ability to tolerate the overload, 

independently of the cause. Those cardiomyocytes who experience the greater 

homeostatic imbalances, lesions and damage to proteins, DNA, and membranes will 

probably die or exhibit greater and/or prolonged activation of certain signaling 

mediators in comparison to those with greater tolerance. For instance, those 

cardiomyocytes experiencing greater calcium kinetic deregulation (e.g. due to 

oxidative damage or energetic failure) will exhibit marked activation of calcium-

induced calcineurin pathway (180). If significant amounts of cardiomyocytes are lost 

for example by necrosis, the surrounding cardiomyocytes and extracellular matrix will 

be more susceptible to the influences of inflammatory cytokines (102, 111). If the 

overloading stimulus results in prolonged activation of the sympathetic system, the 

sustained elevated levels of circulating catecholamines may favor the chronic 

activation of the cardiac beta-1-adrenergic receptors, and consequently, apoptosis (84, 

165). Therefore, the signaling pathways that are detected to be more up-regulated in a 

certain biochemical assay may not be stimuli-specific per se, but rather a reflection of 
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the severity of the stimuli and of the different susceptibility of the overall 

cardiomyocyte population to the stimuli. Such understanding has been difficult by the 

fact that the great majority of studies use homogenates of the entire, or parts, of the 

cardiac muscle, which does not allow the subtlest changes to be detected. Moreover, 

this methodological approach compromises the understanding of important aspects 

such as the origin of the transcripts or proteins (relative contribution from 

cardiomyocytes and non-cardiomyocytes), how many cardiomyocytes participate in 

the response to stress (generalized response or specific to certain regions of the heart), 

what type of cardiomyocytes express a certain transcript (e.g. young and/or old, 

mononucleated and/or multinucleated, more or less damaged cardiomyocytes), or 

even if the same cardiomyocyte co-express multiple genes at the same time. 

 

1.1.2.1.2. Myosin heavy chain isoforms 

The ability of the heart to eject blood is highly dependent on myocardial 

shortening velocity, a propriety largely determined by its myosin heavy chain (MHC) 

isoforms composition (88). Two distinct isoforms, alpha and beta, are expressed in the 

mammalian heart. The rodent adult heart expresses predominantly alpha-MHC  

(>90%), whilst humans express mainly beta-MHC (>95%) (164, 178). While alpha-

MHC is associated with a higher adenosine triphosphatase (ATPase) activity and 

enhanced shortening velocity, beta-MHC is slower but capable to generate the same 

cross-bridge force at a lower energetic cost (135, 178, 191). Developmental stage, 

thyroid status and exercise training or chronic work overload induced by disease 

settings, all alter MHC composition. For example, exercise training generally induces 

an up-regulation of alpha-MHC in rats (118, 214), though increased beta-MHC has 

also been reported without any compromise to cardiac function (109). On its turn, 
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data from human and animals studies suggest that cardiac hypertrophy induced by 

pathological settings such as long-term hypertension or myocardial infarction is 

accompanied by increased expression of the slower MHC isoform (88, 97, 110, 118, 

164, 178, 190, 191). Recently, it was shown that only a minority of cardiomyocytes, 

located in specific regions such as in the base of the LV and tips of the papillary 

muscle from mice, express beta-MHC in response to chronic pressure overload (162). 

Interestingly, these cardiomyocytes were smaller than those not expressing the beta 

isoform, challenging the current view of beta-MHC as a marker of maladaptive 

cardiomyocyte hypertrophy (162).   

It has been proposed that a shift from alpha- to beta-MHC might be an adaptive 

response as this isoform is energetically more efficient and thus preserves energy (97, 

106). However, overexpression of beta-MHC in transgenic mice failed to prevent 

cardiac dysfunction under chronic isoproterenol challenge or in a post-infarction 

failure model (134). Remarkably, these mice tolerated exercise training without any 

sign of maladaptation (134). On its turn, transgenic rabbits expressing alpha-MHC 

were protected from tachycardia-induced cardiomyopathy (114) but not from 

myocardial infarction or LV pressure overload-induced HF (113). While the impact 

on cardiac function of MHC isoforms manipulation remains poorly understood, 

improvement of cardiac function has been constantly associated with a coordinate 

increase in alpha- and a decrease in beta-MHC in the rat heart (96, 110, 134). 

Therefore, it remains to be demonstrated if the change in MHC isoform is a cause or a 

consequence of HF, or if it merely results from the commitment of newly formed 

cardiomyocytes (152) and is only transitorily maintained while the new 

cardiomyocyte matures. This interpretation is reasonably sustained by the fact that: i) 

beta-MHC is increased in maladaptive remodeling (88, 97, 110, 118, 164, 178, 190, 
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191), ii) differentiation of cardiac stem cells (CSC) into cardiomyocytes is also 

increased (3, 11, 121, 122, 152, 170, 252), iii) smaller cardiomyocytes, and apparently 

not larger, express beta-MHC (162) and iv) smaller cardiomyocytes are though to be 

younger than larger cardiomyocytes (223). 

 

1.1.2.1.3. Excitation-contraction coupling disturbances 

Calcium homeostasis has a major role in the process of contraction and 

relaxation (excitation-contraction coupling). Depolarization of the cardiomyocyte 

membrane leads to entrance of calcium to the cytosol through the opening of L-type 

calcium channels (LTCC), triggering further calcium release from the SR via 

ryanodine receptor (RyR). Intracellular calcium then binds to troponin C in the 

myofilaments and initiates contraction (19, 126, 264). Subsequent relaxation is 

dependent of calcium detachment from troponin C, which is recaptured into the SR by 

SERCA2a or extruded from the cell by the sarcolemmal sodium/calcium exchanger 

(NCX). Exercise training results in improved cardiac function, which has been 

associated with enhanced calcium handling. Exercise was shown to increase the 

expression and activity of SERCA2a, but not total phospholamban (PLN) (128, 264). 

This up-regulates the SERCA2a/PLN ratio and therefore allows SERCA2a to increase 

the rate of calcium uptake. Increased phosphorylation status of PLN at Thr17 residue 

mediated by exercise-induced activation of calcium calmodulin-dependent protein 

kinase (CaMK) II and by Akt was shown to contribute to increase SERCA activity 

(64, 130). Akt also seems to regulate LTCC stability, thus influencing cardiomyocyte 

calcium entry, handling and contractility (64). Moreover, exercise seems to increase 

inotropism by increasing myofilament responsiveness to calcium (265). In contrast, 

important disturbances were detected in cardiomyocytes from failing hearts (78, 126, 
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177, 187, 229). HF has been associated with a sustained increase in intracellular 

calcium concentration, thus interfering with normal excitation-contraction coupling 

and relaxation (19, 126). Accumulation of calcium in the cytosol has been implicated 

in cardiac dysfunction by impairing mitochondrial activity (238), promoting cellular 

death and proteolysis (71, 72), and by triggering maladaptive hypertrophic pathways 

(16, 127, 176, 180). Reduced SERCA2a expression and activity has been pointed as a 

major cause of this calcium homeostatic disruption (29, 72, 177, 220, 229), and 

consequently in the pathogenesis of the contractile defects observed in HF (78, 126). 

Of note, its manipulation was shown to improve cardiac function (78, 126, 128, 158, 

177, 187, 229) and gene transfer of SERCA2a is currently being tested in clinical 

trials (90).  

1.1.2.1.4. Energy and metabolism 

In order to maintain proper functioning, the heart needs to have a constant and 

efficient energetic resource (108, 112). In the healthy heart, oxidative phosphorylation 

is capable to maintain normal concentrations of ATP, and guarantee adequate supply 

even when its work output increases 3-to 5 fold in comparison to basal conditions 

(112). Fatty acid oxidation is the major source of energy, accounting for 60-90% of 

ATP production, with the remaining 40-10% coming from glucose oxidation (193). 

Cardiac remodeling induced by exercise training is associated by optimized fatty acid 

and glucose oxidation machinery (30, 89, 120, 240), enhanced mitochondrial 

respiration and ATP production (195). In opposition, the failing heart is recognized as 

an energy-starved engine running out of fuel (193). As HF progresses to the more 

advanced stages, there is a gradual decline in the activity of mitochondrial respiratory 

pathways, compromising ATP production (160, 230). Alterations in the substrate 

utilization, oxidative phosphorylation and high-energy phosphate metabolism, have 
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all been pointed as possible causes of ATP deficiency (28, 116, 193, 230, 237, 255). 

These changes seem to be explained, at least partially, by mitochondrial structural 

abnormalities and reduced activity of electron transport chain complexes (28, 33, 80, 

108, 250), which can be impaired for instance by oxidative and nitrative damage (159, 

188, 202). The consequent lack of energy dramatically compromises cellular 

functions such as ion transport (e.g. sodium/potassium pump activity), sarcomeric 

function and intracellular calcium homeostasis (e.g. SERCA2a functioning), therefore 

contributing to cardiac dysfunction and HF.  

 

1.1.2.1.5. Death and renewal  

It is widely accepted that the heart is a postmitotic organ, without the capacity 

to regenerate (6, 62, 143). Additionally, cardiomyocyte death has been considered a 

relatively rare event in the healthy normal (55, 84, 167) or exercised myocardium 

(118, 132, 234), but to be exacerbated in both human and animal settings of HF, thus 

contributing to the progression of the disease (87, 181, 198, 258). In failing human 

heart, apoptosis was estimated to account for an annual rate of cardiomyocyte loss of 

2-4% while necrosis contributes with 11% and autophagy also with 11% (170). 

Accordingly, in the absence of cardiac disease, the heart was supposed to have a 

constant number of cardiomyocytes throughout the life, with the same age of the 

individual. In line with these assumptions, any increase in cardiac mass in response to 

workload was attributed mainly to cardiomyocyte hypertrophy and any loss of 

cardiomyocytes was considered irremediable, but partially compensated by the 

hypertrophy of the surviving cardiomyocytes (6, 62). However, there is now strong 

evidence to support a more dynamic view of the heart, where cardiomyocyte growth, 

death and renewal co-exist and contribute to the normal homeostasis of the heart (15, 
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62, 121, 122). Indeed, it seems that cardiac cellular losses are not so rare as initially 

thought. Evidence shows that it occurs continuously during the life span as a 

consequence of the normal wear and tear, increase as we age and is more significant 

in man than in women (15, 87, 121, 122). It has been estimated that approximately 

3x106 cardiomyocytes per day are eliminated in the healthy adult human heart, 

increasing to 179x106 and 97x106 in the acute and chronic infarcted heart, 

respectively (6, 87, 198). Estimates have not been conducted in the exercised heart 

but some evidence also suggests that cardiac cell death may be increased, at least in 

response to acute prolonged exercise. For instance, increased pro-apoptotic markers 

have been reported in the heart from rats submitted to a bout of exercise until 

exhaustion (107). Also, increased circulating levels of cardiac troponin T (186, 192, 

249), structural abnormalities such as myofibrillar disruption (119) and abnormalities 

of the cardiac interstitium characterized by accumulation of collagen (13, 42, 261, 

263) have been detected after strenuous exercise, suggesting that cardiomyocyte death 

occurred. Theoretically, the rate of cardiomyocyte loss would be a little higher to that 

presented by the normal sedentary heart since, comparatively, each bout of exercise 

imposes a greater demand to each cardiomyocyte. Overall, these observations 

provided some support to the concept of ongoing cardiomyocyte degeneration and 

loss, which is progressively more evident as the duration and/or severity of the 

cardiac workload increases.  

Such rates of cellular death imply that in few years the heart would completely 

disappear. However, it seems that the heart contains a population of CSC that are able 

to differentiate into new cardiomyocytes, as well as into endothelial and smooth 

muscle cells (11, 62, 121, 122). This allows the heart to compensate the loss of 

cardiomyocytes and thus, to some extent, maintain cardiac structural and functional 
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integrity. The magnitude of CSC activation and differentiation into new 

cardiomyocytes seems to be related with the level of the cardiac workload (6, 248). 

Indeed, activation of a large proportion of CSC and addition of new cardiomyocytes 

(hyperplasia) have been reported under cardiac-demanding conditions such as acute 

and chronic cardiac infarction (3, 12, 121, 224, 252), chronic pressure overload (251), 

and exercise training (63, 132, 157, 257). Excepting to exercise training, this response 

fails to normalize the workload or to correct the structural and functional 

abnormalities of the infarcted or chronically pressure overloaded heart, which 

ultimately progresses to HF (152). Possible explanations include loss of CSC of the 

damaged area by apoptosis/necrosis and the difficulty of CSC from spared areas to 

migrate into the scar (152). A few authors also argue that some cardiomyocytes retain 

the ability, though limited, to reenter the cell cycle and suffer mitotic division (12, 17, 

22, 136, 143, 223). This property seems to be specific from approximately half of the 

mononucleated cardiomyocytes which were demonstrated to be the only to complete 

cytokinesis (17). Of note, exercise training, but not chronic pressure overload, 

induced an increase in cardiomyocyte proliferation in the rat heart (22). Altogether, 

these data suggest that cardiomyocyte death, together with regeneration, plays a 

determinant role in the homeostasis of the heart and challenges the dogma that the 

adult heart is a postmitotic organ, without renewal capacity. Besides cellular 

hypertrophy, hyperplasia may also underlie the cardioprotective phenotype induced 

by exercise training. Contrarily to cardiac overloading diseases (and probably 

strenuous exercise), the workload imposed by moderate exercise training is constantly 

and fully compensated by the differentiation of CSC and proliferation of 

cardiomyocytes. 	
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1.1.3. Extracellular Matrix (ECM) Remodeling 

The matrix support of the heart is predominantly collagen with relatively small 

amounts of fibronectin, laminin and elastin (115).  Under normal conditions or in a 

setting of physiological growth, a fine network of collagen fibers provides structural 

integrity and helps to maintain normal cardiac performance (9, 123, 172). An 

exception has been recently provided, with data showing that strenuous and prolonged 

exercise training can increase the fibrotic levels in the RV of rats (13). A few human 

data also support the idea that elevated volumes of training are associated with the 

development of fibrosis but need confirmation from longitudinal studies (42, 261, 

263). In pathological settings (45, 54, 67, 207, 210, 254), regardless the etiology, 

fibrillar collagen (fibrosis) can accumulate as reactive (e.g., an adverse accumulation 

collagen) or as reparative fibrosis (i.e., scar tissue) that replaces the cardiomyocytes 

that are lost by necrosis (26, 232). Apoptosis does not lead to fibrosis since it is 

devoid of inflammatory reaction (232). Accumulation of fibrosis adversely affects 

compliance (increase stiffness), electrical activity (facilitates arrhythmogenesis) and 

oxygen diffusion (promotes an ischemic environment), increasing the susceptibility 

for HF development (16, 54, 95, 115, 182, 254). Collagen is synthesized by 

myofibroblasts, which are thought to result from differentiation of resident fibroblasts 

or recruitment of microvascular pericytes, endothelial cells and bone marrow-derived 

circulating progenitor cells (133, 273). TGF-beta is considered the most important 

activator of myofibroblasts (146) but neurohumoral factors (e.g. ET-1, Ang II and 

aldosterone), as well as inflammatory mediators [e.g. interleukin-6 (IL-6), tumor 

necrosis factor (TNF)-alpha] are also involved (85). Of note, osteopontin (OPN), a 

matricellular protein and cytokine (266), was shown to be determinant in the 

reorganization of the ECM during cardiac remodeling as it modulates both TGF-beta- 



18	
  

and Ang II-mediated fibrotic response (43, 148, 256). Moreover, OPN favors collagen 

accumulation by restraining metalloproteinases (MMP) through inhibition of IL-1beta 

(267). MMP are collagenases responsible for collagen degradation, whose activity is 

repressed by endogenous tissue inhibitors (TIMP). The interaction and balance of 

MMP and TIMP determines the maintenance of ECM homeostasis (236). The pro-

inflammatory status of HF patients (increased IL-6, TNF-alpha and IL-1beta) favors 

MMP activation (85). Increased MMP activity and decreased levels of TIMP results 

in excessive degradation of the ECM and subsequent ventricular dilatation and their 

modulation seems to provide important ameliorations of cardiac function (23, 117, 

154, 208). Of note, it has been recently proposed that increased activity of MMP-9 

and -14 are important mediators of CSC invasion to the fibrotic tissue, potentially to 

repopulate the scarred area (224). Current data suggest that resident CSC do not seem 

to be able to spontaneously migrate from the viable tissue to fibrotic areas (6) but it 

seems that activation of growth factors facilitates the infiltration of the scarred tissue 

and generation, to some extent, of cardiomyocytes and coronary vessels (224). 

 
 

1.1.4. Cardiac vascularity 

Several evidences indicate a strong relation between cardiac capillary density, 

cardiomyocyte hypertrophy and cardiac function (48, 103, 225, 231, 247). Adequate 

perfusion is fundamental for myocardial homeostasis. As the heart remodels in 

response to exercise training, concomitant capillary growth is thought to guarantee 

that capillary density and perfusion remains normal (145, 260). This adaptation 

contrast with what happens in response to sustained or progressive workloads induced 

by pathological settings, where a mismatch between cardiac capillaries and the size of 

the cardiomyocytes occurs (225). Reduced capillary density has been observed in 
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both humans and animal settings with HF (1, 20, 76, 176, 207, 225). Vascular 

rarefaction compromises oxygen delivery favoring an hypoxic environment, with 

subsequent loss and degeneration of cardiomyocytes, atrophy, and interstitial fibrosis, 

contributing to HF progression (32, 81, 102, 231). Angiogenesis, the growth of new 

vessels from existing ones, is determinant for normal organ growth and wound 

healing. Under physiologic conditions, growth factors such as vascular endothelial 

growth factor (VEGF) and Angiopoietin 1 provide a tight control between 

angiogenesis and organ growth (19). Late stages of HF are associated with decreased 

expression of angiogenic factors, coincident with the progressive loss of capillaries 

and cardiac function (1, 32, 59, 176, 205). Treatment with VEGF or Angiopoietin 1 

was shown to prevent the loss of capillaries and rescue cardiac function (225, 275). 

The use of vascular growth for therapeutic purposes is currently under exploration in 

clinical trials (244).	
  

 

1.2. Exercise training-induced cardiac protection 

1.2.1. Brief historical perspective  

The notion that exercise training can provide a protective phenotype to the 

myocardium seems to be out of any dispute and the recognition of its potentialities as 

a non-pharmacological option to prevent cardiovascular diseases (CVD) is not from 

these days. We had opportunity to access some papers from the late 1880s, early 

1890s and 1900s were it was already possible to find a serious concern regarding to 

the use of exercise training with both therapeutic (8, 65, 161, 227, 245) and 

preventive purposes (8, 65). From these, we would like to highlight two papers 

published in Transactions of the American Climatological Association journal. The 

first one is from 1895 and was written by a physician named Robert Babcock (8), 
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were the preconditioning effects of exercise against subsequent angina pectoris is 

reported:  

“Improved arterial circulation is so manifest a result of these exercises that 
Dr. Schott has known them to lessen the frequency, nay, even the severity of 
attacks of angina pectoris in individuals with arteriosclerosis who had been 
unable to indulge in even very moderate physical exercise taken in the 
ordinary ways of walking, etc.; permanent amelioration of the sufferer's 
condition has been achieved in some of these cases.” 

(Babcock, 1895, p304) 
 

The second report is from another physician, Henry Elsner (65), who in 1910 was, 

apparently, aware of the beneficial effects of exercise in preserving cardiovascular 

health:  

“Therefore to the busy brain-worker, whether he has hypertension or not, we 
are forced to recommend periods of quiet, prolonged rest, change of scene, 
proper exercise, and temperance in all things.” 

(Elsner, 1910, p150) 
 
Although these early evidences mainly based on empiric observation, the link 

between exercise and health was still looked with much skepticism by the medical 

community. It was only in the middle of 20th century that physical exercise started to 

be generally recognized as an important way to promote cardiovascular health, and 

accepted as an important preventive measure (203). The first steps are attributed to 

Professor Jeremy Morris and his associates, who showed for the first time an 

association between vigorous exercise and protection against coronary heart disease, 

by comparing active conductors with sedentary drivers of the London double-decker 

buses. They concluded that vigorous exercise was a natural defense of the body, 

providing protection to the ageing heart against ischemia and its deleterious 

consequences (185). In the following years, numerous epidemiological studies were 
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performed, supporting the reduced incidence of cardiovascular events (91, 168, 173) 

and all-cause mortality (173) in individuals engaged in regular physical exercise. 

 

1.2.2. Exercise training and cardiac tolerance to pressure overload 

The above-mentioned epidemiological studies suggest that individuals engaged in 

regular physical exercise develop a resistant heart to different harmful stimuli (91, 

168, 173). As initially reviewed, exercise training induces a series of compensatory 

adaptations that translate into improved cardiac function. These adaptations are 

believed to allow the heart to respond more efficiently to the daily hemodynamic 

demands, without significant disturbances of cellular homeostasis (increased 

tolerance). For instance, increased activity of MAPK (ERK, JNK and p38) and gene 

expression [c-myc, c-fos, c-jun, ET-1, brain natriuretic peptide (BNP) and IGF-1] was 

observed in the heart of sedentary rats after a single bout of exercise (111, 233). When 

trained animals performed the same bout of exercise, this effect was lost, indicating 

that the heart from these animals was more tolerant to that exercise’s intensity. 

Increased tolerance provided by exercise was also observed against more demanding 

and injurious insults such as in experimental ischemia-reperfusion (I-R) (25, 38, 71, 

105, 109, 150, 270), myocardial infarction (MI) (47, 49, 56, 70) or doxorubicin 

cardiotoxicity (7). Of note, cardiac protection to I-R was shown to be promoted by 

short (i.e., 1-5 day) and long-term (i.e., weeks to months) exercise training (51, 211), 

and seems to extend to both male and female (51, 92, 151), in the young and aged 

hearts (239), and, importantly, to be present several days after cessation of exercise 

training (150). While the mechanisms underlying such improved response are still 

poorly comprehended [reviewed in references (83, 212)], evidence points for elevated 

myocardial levels of antioxidants (71, 270), increased expression of sarcolemmal (24, 
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38) and, potentially, of mitochondrial (213) ATP-sensitive potassium  as important 

mediators of exercise-induced cardioprotection against I-R.  

The question that follows is if the increased tolerance in the acute phase persist 

and translate in subsequent less remodeling of the myocardium in the healing phase. 

Remodeling of the left ventricle (LV) after I-R or MI injury is associated with 

changes in LV geometry, function, and histologic characteristics that lead to increased 

risk of HF (47, 49, 69, 70, 82). Apparently, because prior exercise results in reduced 

infarcted area, less workload is imposed to each cardiomyocyte and less activation of 

the signaling pathways involved in cardiac remodeling are expected to occur. 

Moreover, because cardiomyocytes from exercised hearts are characterized by several 

intrinsic beneficial adaptations that improve contractility, they are supposed to 

tolerate better the resultant pressure overload, and thus cardiac function should be 

improved (58). A few number of studies give support to these ideas by showing that 

exercise training prior to permanent coronary artery ligation protected cardiac 

function, decreased maladaptive remodeling and improved survival, several weeks 

after myocardial infarction induction (47, 49, 69, 70). Improvements were related 

with increased arteriolar density, lower ECM remodelling and pro-apoptotic markers, 

decreased mRNA expression of ANP and improved energetic status (decreased 

aldolase and increased cytochrome c-oxidase and fatty acid binding protein mRNA 

expression) (49, 69, 70). Overall, these findings suggest that even when regular 

exercise fails to prevent a major cardiovascular event, it can still act to prevent cardiac 

dysfunction and improve survival (49). Therefore, it is important to assess if the long-

lasting benefits of prior exercise can indeed be extended to other relevant cardiac 

insults, namely to pressure overload conditions.  Cardiac diseases such as pulmonary 

and systemic hypertension or aortic stenosis impose significant pressure overload to 
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the heart. As initially described, the heart has the ability to adapt and develop short-

term compensatory responses, but ultimately maladaptation ensues and HF occurs 

(60, 73, 172, 184, 241). Increasing the tolerance of the heart to pressure overload 

could eventually prevent or delay cardiac dysfunction and HF.  
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2. AIMS 

With these concepts in mind, our major purpose in this work was to address if 

prior exercise training could increase the tolerance of the heart to both acute and 

chronic cardiac pressure overload and to provide some insights about potential 

underlying mechanism. We also intended to verify if the cardioprotective phenotype 

of exercise training could be mimicked by a stimulus of different nature, designed to 

simulate the duration and magnitude of the exercise-induced cardiac overload.  

This goal is sustained by the specific aims presented in each paper that resulted 

from this entire work, namely: 

 

a) Paper I: 

• to test if moderate exercise training increases tolerance to acute 

pressure overload stimulus, protecting from cardiac dysfunction; 

• to test if exercise training prevents the activation of mechanisms 

implicated in cardiac remodeling. 

 

b) Paper II: 

• to investigate if the exercise-induced protective cardiac phenotype 

could be mimicked by chronic intermittent cardiac overload 

(designed to mimic the duration and magnitude of exercise induced 

overload) induced by beta-adrenergic stimulation with dobutamine; 

• to investigate if the cardiac phenotype induced by chronic 

intermittent beta-adrenergic stimulation could mimic the protection 

conferred by exercise training against left ventricular acute 

pressure overload. 
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c) Paper III: 

• to assess the impact of exercise training performed at different 

time points of RV chronic pressure overload secondary to 

experimental PAH induced by monocrotaline (MCT) on cardiac 

function;  

• to asses if exercise training could modulate important markers of 

cardiac maladaptation, namely calcium handling disturbances, 

alpha to beta-MHC shift, neurohumoral activation, collagen 

deposition, inflammation, oxidative phosphorylation impairment 

and oxidative damage. 
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3. RESULTS 
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ABSTRACT 

Cardiac overload imposed by exercise training promotes a unique cardioprotective 

phenotype. In the present study we tested whether chronic intermittent cardiac 

overload induced by beta-adrenergic stimulation, designed to mimic the duration and 

magnitude of exercise induced overload, could provide similar benefits. Male Wistar 

rats were submitted to treadmill running (Ex,n=20), dobutamine (Dob; 

2mg/kg,s.c.,n=20) or placebo administration (Cont,n=20) for 5 days/week during 8 

weeks. Next, animals were sacrificed for histological and biochemical analysis or 

submitted to left ventricular (LV) hemodynamic evaluation in baseline conditions, in 

response to isovolumetric contractions and to sustained LV acute pressure overload 

(35% increase in peak systolic pressure maintained for 2 hours). Baseline cardiac 

function was enhanced in Ex and the response to isovolumetric heartbeats was 

improved in both Dob and Ex. Increased tolerance to sustained acute pressure 

overload was also observed in Dob and Ex, in contrast to Cont that presented diastolic 

dysfunction. Cardiac hypertrophy was present in Dob and Ex without an increase of 

collagen and osteopontin-1. Their hypertrophic phenotype was identical as they 

exhibited similar MHC isoforms composition, similar increase in phospho Akt/mTOR 

and SERCA2a and normal levels of calcineurin. In-gel assessment of oxidative 

phosphorylation showed increased activity of mitochondrial complex IV and V in 

both Dob and Ex. Chronic submission to intermittent cardiac overload by beta-

adrenergic stimulation provides a cardioprotective phenotype resembling several 

features of exercise training. These data suggest that the duration and magnitude of 

the stimuli may play a role in the development of an adaptive or maladaptive 

phenotype. 

Keywords: exercise; intermittent cardiac overload; hypertrophy; cardioprotection 
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INTRODUCTION 

Cardiac overload represents one of the most important modulators of cardiac 

phenotype. Under chronic loading conditions induced by disease states such as 

hypertension or aortic stenosis, the heart may develop heart failure. In opposition, 

chronic workload elevations elicited by exercise training provide an adaptive 

phenotype (5), which confers cardiac protection against subsequent cardiac insults (2, 

17, 18, 39) and can even correct cardiac functional, structural and molecular 

abnormalities caused by previous pathological overloading states (22, 35, 37). 

Moreover, distinct features at the cellular and molecular level have been identified 

that differentiate these two phenotypes. Exercise training is associated with cardiac 

hypertrophy in the absence of collagen deposition, normal or increased alpha-MHC 

isoform, activation of the IGF-1/PI3K/Akt/mTOR pathway and mitochondrial 

improvements (5, 24, 27, 37). In opposition, cardiac hypertrophy induced by 

pathologic overloading states is accompanied by increased collagen levels, a shift to 

the slower beta-MHC isoform, activation of the calcineurin/NFAT pathway and 

mitochondrial dysfunction (1, 5, 45).  

The reason of such a divergent response remains unknown but the features of 

the stimuli, namely its duration and intensity, may be determinant (21, 29, 30). If the 

stress is too severe or if it is too prolonged, the cell might not have sufficient time to 

recover, its integrity can be compromised and cellular death pathways might be 

favored, progressively contributing to maladaptation (10, 34). On its turn, if there is a 

perfect match between the stress demands and the cellular response, pro-survival 

pathways are activated and an improved homeostatic capacity is attained (10). In this 

sense, the protective adaptations induced by exercise training would result from the 
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cumulative effects of transient changes in gene transcription induced by each acute 

bout of exercise (48, 52). Increased activity of MAPK and enhanced gene expression 

of c-myc, c-fos, c-jun, endothelin-1, BNP and IGF-1 were detected after an acute bout 

of exercise (25, 26). Moreover, Atf3, Fos, Apold1 and Pxdn gene expression were 

also shown to be up-regulated in response to acute exercise (48). Of note, these gene 

expression modifications tended to be attenuated after a period of training, suggesting 

the acquisition of an improved homeostatic state. In contrast, prolonged overloads of 

pathological origin are paralleled with chronic elevations of some of these mediators, 

indicating that their sustained up-regulation may underlie the development of a 

maladaptive phenotype (5, 15, 20, 25, 40, 45). Thus, the cell’s lack of an appropriate 

recovery period, together with a progressive or sustained elevated functional demand, 

may be the reason why stimuli like hypertension or aortic stenosis lead to cardiac 

dysfunction, whereas intermittent cardiac overloads during repeated bouts of exercise 

develops a cardioprotective phenotype. Further substantiating this hypothesis, is the 

observation that contrarily to chronic pressure overload, intermittent transverse aortic 

constriction (iTAC) was able to induce a mild hypertrophic phenotype with preserved 

systolic function and fetal gene expression that resembled the exercised group (45). 

iTAC animals also developed diastolic and beta-adrenergic dysfunction, 

cardiomyocyte apoptosis and vascular rarefaction (45) but these disturbances may 

fairly be attributed to the severity of the overload that was not controlled. 

Consequently, the time that mediated between each iTAC application was not 

adequate to allow the cellular recovery, and possibly the capacity of the cell to 

maintain genomic and macromolecular integrity was progressively lost. 

Thus, it is possible that the regular submission to different intermittent and 

tolerable amounts of stresses may produce beneficial adaptations similar to exercise. 
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Therefore, we hypothesized that a stimuli of different nature but with comparable 

cardiac overloads in terms of magnitude, applied during the same period of time, 

would resemble the acute hemodynamic demands induced by exercise training, and 

thus, when repeated over time, would result in comparable cardioprotective 

phenotype. To test this hypothesis, we submitted rats to exercise training or to similar 

chronic controlled intermittent cardiac overload induced by beta-adrenergic 

stimulation with dobutamine, and compared their phonotypical adaptations and 

tolerance against acute pressure overload.  

 

 



47	
  

MATERIAL AND METHODS 

Animal experiments were performed according to the Portuguese law on animal 

welfare and conform to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85–23, 

Revised 1996). The ethical committee of the University of Porto, Portugal approved 

all studies.   

Preliminary hemodynamic experiments were performed in order to determine the 

dose of dobutamine that could reproduce some aspects of our exercise training 

protocol. Specifically, we were looking for a dosage that could induce a similar 

hemodynamic demand (~40% increase heart rate and ~15% increase in peak systolic 

pressure) (36), that could be maintained for the same period (90 minutes), and that 

could be applied daily for several weeks (5 days/weeks during 8 weeks).  To perform 

this first task, male Wistar rats (n=10; age=5-6 weeks, Charles River Laboratories, 

Barcelona) were anaesthethysed by inhalation of a mixture of sevoflurane (4%) and 

oxygen, intubated for mechanical ventilation (60 cpm, tidal volume set at 1 ml/100g; 

Harvard Small Animal Ventilator, Model 683) and placed over a heating pad (body 

temperature is maintained at 37°C). One pressure-volume catheter (model-FTM-

1912B-8018, 1.9F, Scisense) was introduced in the left ventricle through the right 

carotid artery as previously described in detail (42).  After stabilize, dobutamine 

(Mayne Pharma, Portugal) was administered subcutaneously (s.c.) and hemodynamic 

parameters were recorded every 10 min for at least 100 min. Considering previous 

data from literature, different doses of this drug were tested in order to define the 

most suitable (8, 9, 12, 33, 51), namely 4, 2 and 1 mg/Kg. Data was stored and 

analyzed with PVAN 3.5 software (Millar). The results that best fitted our criteria 

were obtained with the administration of 2 mg/Kg of dobutamine. Results from 3 
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independent experiments with acute dobutamine were averaged and are shown in 

Figure 1. Dobutamine induced an increase of ~15% in peak systolic pressure, ~30% 

in HR and ~190% in dP/dtmax (Figure 1-A, B and C, respectively), which resembles 

previous published data using the same concentration (9).  

 

Study design 

Male Wistar rats (n=60; age=5 weeks; Charles River laboratories, Barcelona) were 

housed in groups of 5 rats/ cage, in a controlled environment at a room temperature of 

22°C, with inverted 12:12-h light-dark cycle, in order to match animals handling and 

training with their most active period. All animals had free access to food and water. 

After 1 week of quarantine, they were randomly attributed to one of the following 

protocols: 1) treadmill exercise training (Ex; n=20), 2) dobutamine administration 

(Dob; n=20) and 3) placebo administration (Cont; n=20). Animals assigned to the Ex 

group trained for 8 weeks, 5 days/week. Exercise duration and treadmill speed was 

gradually increased over the course of the first 3 weeks of training until animals 

achieved 90 min/day at 25 m/min. After that, both intensity and exercise duration 

were maintained constant. Animals from Dob group were injected (s.c) with 2 mg/kg 

of dobutamine (Mayne Pharma, Portugal) for 8 weeks, once a day, 5 days/week. 

Animals from Cont group and Ex group received an equal volume of sodium chloride 

(NaCl) 0.9% (s.c.). Dosages were adjusted weekly according to the body weight and 

dilutions were performed with 0.9% NaCl. 

 

Hemodynamic evaluation 

Twenty-four hours after ending the protocols, half of the animals from each group 

were anaesthethysed by inhalation of a mixture of sevoflurane (4%) and oxygen, and 
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were euthanized by exsanguination. Tissue samples were collected and prepared for 

histological analysis and biochemical studies as will be explained latter. The other 

half of the animals was also anaesthethysed by inhalation of a mixture of sevoflurane 

(4%) and oxygen, intubated for mechanical ventilation (60 cpm, tidal volume set at 1 

ml/100g; Harvard Small Animal Ventilator, Model 683) and placed over a heating 

pad (body temperature is maintained at 37°C). Under binocular surgical microscopy 

(Wild M651.MS-D, Leica;Herbrugg, Switzerland), the right jugular vein was 

cannulated for fluid administration (prewarmed Lactated Ringer's solution) to 

compensate for perioperative fluid losses. The heart was exposed by a median 

sternotomy and the pericardium was widely opened. Descending thoracic aorta was 

dissected and a silk suture 2/0 was placed around it and passed through a plastic tube 

in order to allow aortic constriction during the experimental protocol. LV 

hemodynamic function was measured with conductance catheters (model-FTM-

1912B-8018, 1.9F, Scisense), connected to MVP-300 conductance system (Millar 

Instruments; Houston, USA) through an interface cable (PCU-2000 MPVS, FC-MR-

4, Scisense), coupled to PowerLab16/30 converter (ADInstruments) and to a personal 

computer for data acquisitions. Parameters from conductance catheter were recorded 

at a sampling rate of 1000Hz, in order to accurately capture all of the features of the 

pressure-volume waveforms produced by the fast beating hearts of rats.  

 

Experimental Protocol 

After complete instrumentation, the animal preparation was allowed to stabilize for 15 

min. Next, hemodynamic recordings were performed in baseline conditions and under 

inferior vena cava or ascending aortic occlusions, the latter producing isovolumetric 

heartbeats. Sustained and selective acute pressure overload to the LV was obtained by 
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controlled banding of the thoracic descending aorta, just above the diaphragm, during 

120 minutes (min). Briefly, this was performed by gently pulling a silk suture, 

previously placed around the descending thoracic aorta, against a plastic tube, until an 

elevation of ~35% of left ventricular peak systolic pressure (LVPmax) was obtained. 

At that time, the constriction was fixed with the help of a clamp and the imposed 

overload was continuously monitored. Adjustment of the constriction was provided in 

order to maintain the same cardiac overload during the entire protocol. Hemodynamic 

measurements were made in baseline steady-state conditions (immediately before 

banding), at 60 and 120 minutes of banding.  All recordings were obtained with the 

ventilation suspended. Data were stored and analyzed with PVAN3.5 software 

(Millar).  

 

Measured parameters 

Heart rate (HR), peak systolic pressure (Pmax), end-systolic pressure (ESP), end-

diastolic pressure (EDP), peak rate of pressure rise (dP/dtmax), peak rate of pressure 

fall (dP/dtmin), constant time of isovolumetric pressure decay (Tau), maximum 

volume (Vmax), minimum volume (Vmin), end-diastolic volume (EDV), end-systolic 

volume (ESV), stroke volume (SV), ejection fraction (EF), cardiac output (CO), 

stroke work (SW) and maximal elastance (Emax), were obtained using PVAN3.5 

(Millar Instruments). To assess intrinsic myocardial function, end-systolic pressure–

volume relation (ESPVR), preload-recrutable stroke work (PRSW), end-diastolic 

pressure–volume relation (EDPVR) and arterial elastance (Ea) were determined from 

pressure–volume loops recorded during transient preload reduction by gently pulling 

the inferior vena cava with a silk suture previously placed around it. An estimate of 

myocardial oxygen consumption was made from the double product obtained by 
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multiplying heart rate with LVPmax, and fractional shortening was calculated as FS 

(%)= [(LVEDV - LVESV)/LVEDV] *100 (35). 

 

Conductance calibration  

Parallel conductance values were obtained by the injection of approximately 100 µl of 

10% NaCl into the right atrium. Calibration from relative volume units (RVU) 

conductance signal to absolute volumes (µl) was undertaken using a previously 

validated method of comparison to known volumes in Perspex wells (41). 

 

Tissue Preparation 

The heart and right gastrocnemius muscle from animals that were euthanized at the 

end of the chronic protocols (not submitted to hemodynamic evaluation), were 

excised and weighed. Under binocular magnification (x3.5), the LV+septum was 

dissected from the RV and weighed separately. Heart weight, LV and gastrocnemius 

were normalized to body weight (BW). Samples from LV were fixed and prepared for 

light microscopy (LM) following routine procedures, or frozen with liquid nitrogen 

for protein and enzymatic studies. 

 

Microscopic evaluation 

Cubic pieces coming from the basal, intermediate, and apical cardiac regions of each 

LV were fixed [4% (v/v) buffered paraformaldehyde] by diffusion during 24 hours 

and subsequently dehydrated with graded ethanol and included in paraffin blocks. 

Xilene was used in the transition between dehydration and impregnation. LV blocks 

were embedded in the upright position in order to distinguish the endocardium, 

midwall, and the epicardium of the LV free wall in cross sections. Serial sections (5 
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µm of thickness) of paraffin blocks were cut by a microtome and mounted on silane-

coated slides. The slides were dewaxed in xylene and hydrated through graded 

alcohols finishing in phosphate buffered saline solution prepared by dissolving 

Na2HPO4 (1.44 g), KH2PO4 (0.24 g), NaCl (8 g), KCl (0.2 g) and adjusting pH to 7.2. 

Deparaffinised sections from LV were stained for haematoxylin-eosin, performed by 

immersing slides in Mayer’s haematoxylin solution for 3–4 min followed by 

immersion in 1% eosin solution for 7 min, dehydration with graded alcohols through 

xylene, and mounted with DPX. Cardiomyocytes surface area (CSA) was measured 

and only round to ovoid nucleated myocyte were considered for analysis. Around 

1000 cardiomyocytes per group were analyzed. In order to determine the amount of 

cardiac fibrosis, LV sections were stained with Picrosirius red and quantified as 

described before (16). In each section, 5 representative images were considered for 

analysis to compensate for variations within sections. For quantitative comparisons, 

random microscopic fields (magnification of x400) from each region were considered.  

 

Left Ventricular Mitochondrial isolation 

Left ventricle mitochondria isolation was performed using the conventional methods 

of differential centrifugation, as previously described in detail (2). All procedures 

were performed at 0-4°C. Briefly, after excised, samples from left ventricles (pools of 

2 animals) were immediately minced in an ice-cold isolation medium containing 250 

mM sucrose, 0.5 mM EGTA, 10 mM HEPES-KOH (pH 7.4), and 0.1% defatted BSA 

(catalog. no A6003, Sigma). The minced blood-free tissue was resuspended in 

isolation medium containing protease subtilopeptidase A type VIII (catalog no. 

P5380, Sigma; 1 mg/g tissue) and homogenized with tightly fitted Potter-Elvehjen 

homogenizer and Teflon pestle. The suspension was incubated for 1 minute (4°C) and 
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rehomogenized. An 0.5 mL aliquot of cardiac muscle homogenate was reserved for 

western blotting analysis of specific protein targets and the remaining homogenate 

was centrifuged at 14,500 g during 10 minutes. The supernatant fluid was decanted, 

and the pellet, essentially devoid of protease, was gently resuspended in isolation 

medium. The suspension was centrifuged at 750 g for 10 minutes, and the resulting 

supernatant was centrifuged at 12,000 g for 10 minutes. The pellet was resuspended 

and repelleted at 12,000 g for 10 minutes. The final pellet, containing the 

mitochondrial fraction, was gently resuspended in a washing medium containing 250 

mM sucrose, 10 mM HEPES-KOH, pH 7.4. Mitochondrial protein concentration was 

spectrophotometrically estimated with the colorimetric method “RC DC protein 

assay” (Bio-Rad) using bovine serum albumin (BSA) as standard.  

	
  

Blue-native PAGE separation of mitochondrial membrane complexes and in-gel 

activity of respiratory chain complex IV and V 

BN-PAGE was performed using the method described by Schagger and von Jagow 

(47). Briefly, mitochondrial fractions (200 µg of protein) from each experimental 

group were pelleted by centrifugation at 20000g for 10 minutes and then resuspended 

in solubilization buffer (50 mM NaCl, 50 mM Imidazole, 2 mM ɛ-amino n-caproic 

acid, 1 mM EDTA pH 7.0) with 1 % (w/v) digitonin. After 10 minutes on ice, 

insoluble material was removed by centrifugation at 20000g for 30 minutes at 4ºC. 

Soluble components were combined with 0.5 % (w/v) Coomassie Blue G250, 50 mM 

ɛ-amino n-caproic acid, 4 % (w/v) glycerol and separated on a 4-13 % gradient 

acrylamide gradient gel with 3.5 % sample gel on top. Anode buffer contained 25 mM 

Imidazole pH 7.0. Cathode buffer (50 mM tricine and 7.5 mM Imidazole pH 7.0) 

containing 0.02 % (w/v) Coomassie Blue G250 was used during 1 hour at 70 V, the 
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time needed for the dye front reach approximately one-third of the gel. Cathode buffer 

was then replaced with one containing only 0.002 % (w/v) Coomassie Blue G250 and 

the native complexes were separated at 200 V for 4 h at 4 ºC. A native protein 

standard HMW-native markers (GE Healthcare, Buckinghamshire, UK) was used. 

The gels were stained with Coomassie Colloidal for protein visualization or incubated 

at 37 ºC with 35 mM Tris, 270 mM glycine buffer, pH 8.3, supplemented with 14 mM 

MgSO4, 0.2 % (w/v) Pb(NO3)2, and 8 mM ATP for evaluation of the ATP hydrolysis 

activity of complex V (54). Lead phosphate precipitation that is proportional to the 

enzymatic ATP hydrolysis activity, was stopped by 50 % (v/v) methanol (30 min), 

and the gels were then transferred to water. Gels were scanned in Molecular Imager 

Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA). Band detection and analysis 

were performed using QuantityOne Imaging software (v4.6.3, Bio-Rad). 

Spectrophotometric evaluation of respiratory chain complex V was also measured as 

previously described (43). The phosphate produced by hydrolysis of ATP reacts with 

ammonium molybdate in the presence of reducing agents to form a blue-colour 

complex, the intensity of which is proportional to the concentration of phosphate in 

solution. Oligomycin was used as an inhibitor of mitochondrial ATPase activity. 

 

Western blotting analysis 

Equivalent amounts of total protein from each group were electrophoresed on a 12.5 

% SDS-PAGE as described by Laemmli (31). One sample from each of the groups 

that were studied was applied in the same gel. Gels containing total proteins or 

mitochondrial proteins (separated by 2-D BN-PAGE) were blotted onto a 

nitrocellulose membrane (Whatman®, Protan®) and nonspecific binding was blocked 

with 5 % (w/v) dry non-fat milk in TBS-T (100 mM Tris, 1.5 mM NaCl, pH 8.0 and 
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0.5 % Tween 20). Membranes were then incubated with primary antibody solution 

(1:1000 dilution; mouse anti-ATP synthase subunit beta, ab14730, abcam; mouse 

anti-SERCA2 ATPase, ab2861, abcam; rabbit anti-calcineurin A, ab52761; mouse 

anti-3-nitrotyrosine, clone 2A8.2, Chemicon; rabbit anti- osteopontin, ab8448; rabbit 

anti-Akt, #9272, Cell Signalling; rabbit anti-Phospho-Akt, #4058, Cell Signalling; 

rabbit anti-mTOR, #2983, Cell Signalling; rabbit anti-Phospho-mTOR, #2971, Cell 

Signalling; rabbit anti-atrogin-1, #AP2041, ECM Bioscience). After 2 hours 

incubation, the membrane was washed with TBS-T and incubated with anti-mouse or 

anti-rabbit IgG peroxidase secondary antibody (1:1000 dilution, Amersham 

Pharmacia Biotech). Immunoreactive bands were detected with enhanced 

chemiluminescence reagents (ECL, Amersham Pharmacia Biotech) according to the 

manufacturer's procedure and images were recorded using X-ray films (Kodak 

Biomax light Film, Sigma). The films and the gels were scanned in Molecular Imager 

Gel Doc XR+ System (Bio-Rad) and analyzed with QuantityOne software version 

4.6.3 (Bio-Rad, Hercules, CA). Four independent experiments were considered for 

analysis. Equal loading was confirmed by staining the membrane with Ponceau S. 

 

MHC isoform determination 

Left ventricles were weighed and transferred to a glass homogenizer. A 1:19 ratio of 

100 mM phosphate buffer, pH 7.4, containing 0.02% bovine serum albumin was 

added. Tissue sections were thoroughly homogenized with tightly fitted Potter-

Elvehjen homogenizer and Teflon pestle. Total protein concentration was 

spectrophotometrically assayed with the colorimetric method “RC DC protein assay” 

(Bio-Rad) using bovine serum albumin (BSA) as standard. Alpha- and beta-isoforms 

of cardiac myosin heavy chain were separated by gel electrophoresis following the 
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procedure described by Talmadge and Roy (50). The amount of protein run on the gel 

was 1 mg per lane. To avoid inter-gel variation, one sample from each of the groups 

studied was applied in the same gel. The stacking gel consisted of 30% glycerol and 4 

% acrylamide:N,N’-methylene-bis-acrylamide in the ratio of 50:1, 70 mM Tris (pH 

6.7), 4 mM EDTA, and 0.4% sodium dodecyl sulfate (SDS). The separating gels were 

composed of 30% glycerol, 8% acrylamide-bis (50:1), 0.2 M Tris (pH 8.8), 0.1 M 

glycine, and 0.4% SDS. Polymerization was initiated with 0.05% N,N,N’,N’-

tetramethylethylenediamine and 0.1% ammonium persulfate. The gels were run in a 

Mini-Protean system (Bio-Rad) at 4°C. The running conditions were 70V (constant 

voltage) for 30 hours. The gels were stained with Coomassie Colloidal, scanned in 

Molecular Imager Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA) and optical 

density analysis of MHC bands was performed using QuantityOne Imaging software 

(v4.6.3, Bio-Rad). Five independent experiments assayed in duplicate were 

considered for analysis. 

 

Statistical Analysis 

Kolmogorov-Smirnov test was performed to check the normality of the data. Kruskal-

Wallis test followed by Dunns test was used for non-normal data (cross sectional 

analysis of cardiomyocytes). Between group’s comparisons of baseline 

hemodynamics, morphometric, fibrosis, Western blot, MHC, BN-PAGE and 

enzymatic activity data were performed with one-way ANOVA. For comparisons of 

hemodynamic data during pressure overload, a repeated measures two-way ANOVA 

test was performed. Significant differences were evaluated with Tukey’s post hoc 

analysis. All statistical analysis was performed with Graph Pad Prism software 
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(version 5.0). Data are expressed as mean ± standard deviation (SD). Significance 

level was set at P<0.05. 
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RESULTS 

General morphometric features of animals submitted to the chronic protocols 

Table 1 summarizes the analyzed morphometric parameters. In comparison to Cont 

group, all other groups presented lower BW (P<0.001). Gastrocnemius weight was 

reduced in Ex group (P<0.05 vs. Cont) but not when normalized to BW. Only 

exercise training resulted in increased HW/BW (P<0.001 vs. Cont). Regarding LV 

mass evaluated by the LV/BW ratio, it was significantly increased in Ex (P<0.01 vs. 

Cont) and Dob (P<0.05 vs. Cont).  

 

Characterization of cardiac function under baseline steady-state conditions  

In vivo contractile function was assessed with a pressure-volume catheter. Full 

hemodynamic data is summarized in Table 2. Heart rate was significantly increased in 

Ex in comparison to all other groups (P<0.05). No differences were noted on Pmax, 

DP, ESP, EDP or dP/dtmin. Peak rate of pressure rise was significantly reduced in 

Dob (P<0.05 vs. Cont). Relaxation, evaluated by the constant time Tau, was improved 

in Ex (P<0.05 vs. all other groups). Considering volume-derived parameters, no 

differences were detected. 

Pressure-volume derived parameters obtained from inferior vena cava occlusion, 

namely ESPVR, PRSW and Emax, were found to be significantly increased in Ex 

(P<0.05 vs. all other groups). No alterations were observed in EDPVR (P>0.05). 

Figure 2 shows typical examples of pressure-volume loops under vena cava occlusion 

from where these parameters were acquired.  
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Characterization of cardiac function in response to beat-to-beat isovolumetric 

contractions and to sustained acute pressure elevations 

 

As illustrated in Figure 3, isovolumetric heartbeats presented similar peak systolic 

pressure and dP/dtmax in all groups, but shorter time constant Tau (faster relaxation) 

in Ex and Dob (P<0.05 vs. Cont). 

Pressure overload by descending thoracic aortic banding induced a 35% increase in 

systolic pressure in all groups, as shown by the rise in LV Pmax (Figure 4-A). All 

groups were able to maintain the imposed overload for the entire duration of the 

banding, and no differences in LV Pmax were observed between groups at any 

moment. Peak rate of pressure rise (Figure 4-B) showed a compensatory increase at 

60 min of banding in Ex and Dob, although significant only in the latter (P<0.05 vs. 

baseline). At 120 min of pressure overload, dP/dtmax further increased in Ex (P<0.05 

vs. Cont and Dob). A slower relaxation (prolonged time constant Tau, Figure 4-D, 

and smaller dP/dtmin, not shown), was observed in Cont group after 60 (P<0.05 vs. 

baseline, Dob and Ex) and 120 min of banding (P<0.05 vs. baseline and Ex). Only 

minor changes were observed in HR and EDP (data not shown). 

 

Characterization of the hypertrophic phenotype  

As depicted in Figure 5-A and B, cardiomyocyte hypertrophy was found in Ex (22%) 

and Dob (38%) (P<0.001 vs. Cont), but more marked in Dob (P<0.001 vs. Ex). No 

alterations were detected in terms of collagen deposition or osteopontin-1 protein 

expression (Figure 5-C and D).  

SERCA2a (Figure 6-A) was significantly increased in Dob and Ex  (P<0.05 vs. Cont). 

A modest increase in the beta/alpha-MHC ratio was present in all experimental 
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groups (Figure 6-B) but without significance (P>0.05). Regarding calcineurin protein 

expression (Figure 6-C), we observed normal values in all groups. The Akt/mTOR 

pathway was also assessed. No differences were noted in the expression of total Akt. 

However, both Dob and Ex groups exhibited a significant increase of Ser473 

phosphorylation of Akt (Figure 6-D) (P<0.05 vs. Cont). Regarding mTOR, a 

significant increase was found in the expression of its total levels and of its 

phosphorylation at Ser2448 in Dob and Ex group (P<0.05 vs. Cont). 

The BN-PAGE densitometric analysis did not reveal differences in the protein 

complexes organization, as can be depicted from the representative density traces for 

complexes’ bands (Figure 7-A). In-gel activity showed elevated complex IV (Figure 

7-B) and V (Figure 7-C) activity in Dob (P<0.05 vs. all groups) and Ex (P<0.05 vs 

Cont). Spectrophotometric quantification of respiratory chain complex V was also 

performed in order to corroborate the in-gel activity of complex V. As shown in 

Figure 7-D, elevated activity of this complex was detected in Dob and Ex (P<0.05 vs. 

Control). 
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DISCUSSION 

The present study addressed the question whether chronic intermittent cardiac 

overload induced by beta-adrenergic stimulation with dobutamine could provide 

cross-tolerance to acute sustained pressure overload. We showed that chronic 

intermittent dobutamine administration, similarly to exercise training, prevents from 

diastolic dysfunction secondary to acute sustained pressure overload. The improved 

tolerance evidenced by both dobutamine-treated and trained animals may be related 

with their similar cardiac hypertrophic phenotype. 

In this work, animals were submitted to intermittent pharmacological cardiac 

overload to test whether they could develop cross-tolerance to acute pressure overload 

and a phenotype similar to that induced by exercise training. Namely, we used a 

dosage of dobutamine (2mg/kg) that increased cardiac overload and contractility (9) 

(Figure 1). Dobutamine, a beta 1- and 2-adrenoreceptor agonist (51), reasonably 

mimicked the duration and magnitude of an acute cardiac overload imposed by the 

exercise training protocol (36). This strategy allowed us to have a certain control over 

the magnitude of the hemodynamic demand that was imposed. This issue is of major 

importance since if the stimulus is too severe, cells may not have sufficient time for 

the homeostatic recovery and may fail to activate or maintain a protective response, 

resulting in the activation of signaling cascades that eventually will favor cellular 

death pathways (21, 29, 30). The cumulative effects of such imbalance may lead to 

cardiac dysfunction in the long-term (34). This notion is corroborated by our previous 

findings (39) that the healthy normal heart develops severe functional disturbances 

accompanied by the activation of important signaling pathways implicated in 

maladaptive remodeling in response to an acute pressure overload. Moreover, a link 

between long-term intensive exercise training, right ventricular dysfunction and 
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increased susceptibility to arrhythmia was recently shown in a rat model, reinforcing 

the concept that the beneficial effects of exercise training may be dose-dependent (4). 

Given that in the study from Perrino et al. (45) the severity of overload was not 

considered, the maladaptation developed by the iTAC may reflect the cumulative 

damaging effects of exaggerated intermittent hemodynamic overloads. In our study, 

the controlled pharmacologically-induced intermittent cardiac overload did not result 

in any compromise of cardiac function at baseline nor in response to single-beat 

afterload elevations, which is an intervention that allows the detection of diastolic 

dysfunction that may not be evident during evaluation at rest, but is revealed during 

exercise or hemodynamic stress (11, 32).  

As evidenced by the hemodynamic results, exercised animals tolerated very 

well the 35% increase in cardiac overload, while significant diastolic dysfunction was 

observed in sedentary animals. These observations are in line with our previous 

findings that contrarily to sedentary animals, the heart from exercised animals is able 

to work under loading conditions without decompensating (39).  It is important to 

note that the severity of the banding was reduced from 60% (previous study) to 35% 

(present study) of LV peak systolic pressure, which further highlights the 

vulnerability of the normal healthy heart to sustained acute increases in afterload. 

Remarkably, chronic administration of dobutamine conferred protection against 

cardiac dysfunction, as evidenced by the stability of diastolic parameters, resembling 

the response of the exercised animals. The enhanced tolerance observed in our study 

is in line with the preconditioning effects induced by dobutamine (3) and other beta1- 

and 2-adrenergic agonists (46) in the rat heart against ischemia-reperfusion injury.  

The similar performance of Dob and Ex groups in response to the sustained 

acute pressure overload suggests that their respective conditioning programs may 
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have promoted similar beneficial adaptations at the cardiac level. In fact, dobutamine 

has been shown to reproduce some of the typical features of exercise training, namely 

cardiac hypertrophy (7, 9) without fibrosis (9), cardiovascular and metabolic 

enhancement (14, 33, 51), increased mitochondrial activity (8), improvement of 

vascular endothelial function (44), increased cardiac (7) and skeletal (14) muscle 

capillary density, without developing cardiac adrenergic desensitization (12). In order 

to provide some insights into the mechanisms underlying the protective effects of 

intermittent cardiac overload induced by dobutamine, we analyzed some markers of 

cardiac remodeling. Adaptive hypertrophy is characterized by hypertrophy of 

cardiomyocytes with little or no fibrosis (37, 53). We found that cardiomyocyte 

hypertrophy was present in Dob and Ex groups without increased levels of fibrosis. 

Consistently, we also detected normal levels of osteopontin-1, a matricellular protein 

that is increased during stress-induced cardiac remodeling, that was shown to mediate 

cardiac fibrosis and diastolic dysfunction (53). This data, in addition to the unchanged 

diastolic stiffness (normal EDPVR and EDP at baseline), suggest normal intrinsic 

myocardial function (23). Therefore, it seems plausible to assume that these factors 

did not account for the divergent performance of Ex and Dob from Cont.  

To further explore the hypertrophic phenotype developed by each of the 

interventions, we assessed the Akt/mTOR and calcineurin protein expression, two 

pathways with distinct roles in the promotion of adaptive or maladaptive hypertrophy, 

respectively (5, 27). Our data shows that the while the former was activated in Dob 

and Ex groups, the last was not. This may contribute to explain, at least partially, the 

similar results obtained by Dob and Ex in response to acute pressure overload. Indeed, 

activation of the Akt/mTOR signal cascade was proposed to be related with improved 

contractile function and calcium handling (27).  
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Protein levels of SERCA2a are typically increased in adaptive cardiac 

hypertrophy.  We found increased total protein levels of SERCA2a in Ex and Dob 

while normal values were present in Cont. Although this does not provide information 

about its functionality, the increased baseline levels together with the unaffected 

dP/dtmin and time constant Tau in Ex and Dob after acute pressure overload suggest 

preserved activity of SERCA2a (13) and a more efficient transport of calcium to the 

sarcoplasmic reticulum (38). The accumulation of calcium in the cytosol is implicated 

in mitochondrial swelling (39, 49) and proteolysis (18, 19). Calcium overload also 

decreases mitochondrial ATP (49) production and thus ultimately may also contribute 

to diastolic dysfunction by limiting the energy for SERCA2a activity. The greater 

activity of mitochondrial complexes IV and V found in Dob and Ex suggests that 

these groups are more prepared to support the energetic cost of an elevated cardiac 

overload, without compromising the ATP that is needed to maintain intracellular 

homeostasis.  

A slight increase in the beta-to-alpha MHC ratio was observed in Dob and Ex, 

but this phenomenon is apparently not a marker of failure (6). Indeed, we showed that 

this small shift to beta-MHC isoform did not compromise the ability to tolerate the 

increased overload. Our data is corroborated by findings from Hwang and coworkers 

who reported increased beta-MHC in the LV of trained rats who also exhibited an 

improved cardiac response to a brief period of ischemia and reperfusion (24). 

Moreover, it was shown that mice expressing predominantly cardiac beta-MHC 

isoform tolerate exercise training without any sign of maladaptation (28). Beta-MHC 

can generate cross-bridge force with higher economy of energy consumption than 

alpha-MHC (28). Therefore, it could be possible that the more economical phenotype 

from Ex and Dob consumed less energy for contraction to support the elevated 
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cardiac overload, leaving more ATP to maintain intracellular homeostasis (24), and 

thus avoiding diastolic dysfunction. 

Overall, our data suggest that the magnitude of the initial hemodynamic 

stimulus may influence the subsequent development of an adaptive or maladaptive 

cardiac phenotype. Indeed, the chronic submission to intermittent cardiac overload 

induced by dobutamine provided cross-tolerance to subsequent acute pressure 

overload. The protection afforded by dobutamine administration seems to be related 

with a more physiological hypertrophic phenotype resembling some features of 

exercise induced-hypertrophy. We propose that, besides the type of the initial 

hemodynamic stimulus (45), its duration, magnitude or severity may be determinant 

for the subsequent development of an adaptive or maladaptive cardiac phenotype.  
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Figure Legends 

FIGURE 1: Acute effects of subcutaneous administration of 2 mg/Kg of dobutamine 

on left ventricular (LV) hemodynamics. Black arrows indicate the time when drug 

was administrated. Error bars are Mean±SD 

 

FIGURE 2: Typical examples of PV-loops obtained during inferior vena cava (IVC) 

occlusion in animals submitted to the chronic protocols 

 

FIGURE 3: Effects of total occlusion of the ascending aorta (isovolumetric 

heartbeats) on LV Pmax, dP/dtmax and tau. Error bars are Mean±SD. *P<0.05 vs. 

Cont 

FIGURE 4: Effects of 120 min of acute pressure overload on LV systolic and 

diastolic function. Baseline values were considered 100% and are represented by the 

dashed line. Values at 60 and 120 min are represented as percentage of variation 

relative to baseline. Error bars are Mean±SD. #P<0.05 vs. baseline *P<0.05 vs. Cont; 

†P<0.05 vs. Dob, ‡P<0.05 vs. Ex 

 

FIGURE 5: Effects of the different chronic protocols on cardiomyocyte hypertrophy, 

fibrosis and osteopontin-1 protein levels. Results illustrated in figures are plotted in 

graphic bars. Error bars are Mean±SD. *P<0.05 vs. Cont; ‡P<0.05 vs. Ex 

 

FIGURE 6: Effects of the different chronic protocols on SERCA2a (A), MHC 

isoforms (B), Calcineurin-a (C) and Akt/mTOR pathways (D and E). Error bars are 

Mean±SD. *P<0.05 vs. Cont 
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FIGURE 7: Effects of the different chronic protocols on oxidative phosphorylation: 

A) LV mitochondrial BN-PAGE profile of the experimental groups; B) Representative 

images of histochemical staining, with semi-quantitative analysis of in-gel activity of 

complex IV; C) Representative images of histochemical staining, with semi-

quantitative analysis of in-gel activity of complex V; D) Activity of complex V 

assayed by spectrophotometry. Error bars are Mean±SD. *P<0.05 vs. Cont; ‡P<0.05 

vs. Ex 
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Table 1: General morphometric characterization 

 Cont  Dob  Ex  
BW (g) 437±34 376±49* 365±37* 
Gast (g) 2.54±0.3 2.33±0.2 2.26±0.3* 
Gast/BW (g/Kg) 5.8±0.9 6.4±0.5 6.3±0.7 
HW (g) 1.10±0.1 1.05±0.1 1.08±0.2 
HW/BW (g/Kg) 2.5±0.2 2.8±0.2 3.0±0.1* 
LV+S (g) 0.74±0.1 0.71±0.1 0.71±0.1 
LV+S/BW (g/Kg) 1.69±0.2 1.91±0.2 * 1.96±0.2 * 
BW: body weight; Gast; gastrocnemius; Gast/BW: gastrocnemius/body weight; HW: 
heart weight; HW/BW: heart weight/body weight; LV+S: left ventricle+septum; 
LV+S/BW: left ventricle+septum/body weight; g: grams; Kg: kilograms.  Data are 
presented as Mean±SD *P<0.05 vs. Cont. 
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Table 2: Baseline hemodynamic characterization 

 Cont Dob Ex 
HR (bpm) 392.1±38.2 399±37 422±24 *† 
Pmax (mmHg) 121.8±14.5 115.4±8.9 120.1±12.4 
DP (mHg/bpm) 47854±8344 46810±6117 50759±7315 
ESP (mmHg) 113.2±16.5 106.0±8.9 111.2±12.5 
EDP (mmHg) 5.8±2.5 4.6±2.1  3.9±0.9 
dP/dtmax (mmHg/sec) 8868.4±1708.3 7154.7±1192.4 * 8788.5±2177.3  
dP/dtmin (mmHg/sec) -9221.3±1919.1 -8109.6±1780.2 -9607.5±2182.3 
Tau W 9.0±1.0 9.0±1.0 7.7±0.9*† 
    
EDV (uL) 146.8±34.3 151.8±51.2 142.8±25.5  
ESV (uL) 56.1±21.5 46.1±25.7 42.4±14.9 
SV (uL) 101.1±24.1 117.8±50.1 106.6±18.6  
EF (%) 67.8±9.1 74.7±11.9 74.3±7.3 
FS (%) 62±12 69±14 71±7 
CO (uL/min) 39696.5±10350.0 46740.5±19162.1 44814.8±7362.7 
SW (mmHg*uL) 9978.3±2320.4 11072.9±5052.2 10305.2±2634.2  
Ea (mmHg/uL) 1.2±0.4 1.0±0.4 1.0±0.2  
    
ESPVR (mmHg/uL) 2.4±1.1 2.0±1.0 3.8±1.5 *† 
PRSW 95.3±25.7 119.9±55.8 169.9±32.9 *† 
Emax 5.8±2.4 6.4±2.7 10.5±4.6 *† 
EDPVR (mmHg/uL) 0.06±0.0 0.05±0.0 0.06±0.0 
HR: heart rate; bpm: beats per minute; Pmax: peak systolic pressure; DP: double 
product; ESP: end-systolic pressure; EDP: end-diastolic pressure; dP/dtmax: peak 
pressure rise; dP/dtmin: peak pressure fall; Tau: constant time; ESV: end-systolic 
volume; EDV: end-diastolic volume; SV: stroke volume; EF: ejection fraction; 
CO: cardiac output; SW: stroke work; Ea: arterial elastance; ESPVR: end-systolic 
pressure volume relation; PRSW: preload-recrutable stroke work; Emax: maximal 
elastance; EDPVR: end-diastolic pressure volume relation. Data are presented as 
Mean±SD. *P<0.05 vs. Cont; †P<0.05 vs. Dob. 
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Figure 5 

Cont Dob Ex 

!"
#$

%&
'(
)*
&(&
+*
$

,$ -$ .$

/$
!"#µ$# !"#µ$# !"#µ$# !"#µ$#!"#µ$#

Cont
Dob Ex

0

2

4

6

Fi
br

os
is

 (%
 fr

om
 to

ta
l a

re
a)

Cont
Dob Ex

60

80

100

120

140

O
st

eo
po

nt
in

-1
 (%

 fr
om

 C
on

t)
Cont

Dob Ex
0

200

400

600
*

*
‡

C
ar

di
om

yo
cy

te
 C

ro
ss

 S
ec

tio
na

l A
re

a 
(µ

m
2 )

 
 

 
 
 
 
 



82	
  

Figure 6 
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Figure 7 
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Background- Increasing evidences suggest that right ventricle failure (RVF) in 

pulmonary arterial hypertension (PAH) is associated with several modifications 

including inflammation and neurohumoral activation, extracellular matrix remodeling 

and mitochondrial dysfunction. We investigated whether exercise training at different 

time points could act as an upstream modulator of multiple signaling pathways 

involved in RV dysfunction in monocrotaline (MCT) model of PAH. 

Methods and Results- Male Wistar rats were submitted to normal cage activity 

(SED+MCT) or to treadmill exercise training before (EXbefore+MCT), during 

(EXafter+MCT) and after (EXtreat+MCT) the establishment of RV pressure overload 

induced by MCT (60 mg/kg). Exercise training prevented muscle atrophy 

(EXbefore+MCT and EXafter+MCT) and attenuated cardiac hypertrophy (lower right 

ventricle/body weight ratio and right ventricle/left ventricle ratio) in all MCT-trained 

groups. Cardiac function was improved in MCT-trained groups with normalization of 

cardiac remodeling (normal SERCA2a protein levels, beta/alpha MHC isoform, ET-1 

and VEGF mRNA). Cardiac fibrosis, inflammation (lower TNF-alpha/IL-10 mRNA 

ratio), and mitochondrial oxidative damage were reduced by exercise. Survival rate 

was enhanced in all MCT-trained groups.  

Conclusions- These data highlight the beneficial effects of exercise in an 

experimental model of PAH and the putative underlying cardioprotective 

mechanisms.  

 

Keywords: exercise training; pulmonary hypertension; cardiac remodeling; right 

ventricular dysfunction;  
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INTRODUCTION 
 
Pulmonary arterial hypertension (PAH) has a complex pathophysiology that includes 

pulmonary vascular remodeling, right ventricle (RV) hypertrophy and failure.1 

Potential mechanisms for adverse cardiac dysfunction leading to RV failure (RVF) 

include cardiomyocyte remodeling,2-5 neurohumoral activation,6-8 inflammation,9 and 

oxidative stress,10 among others.11 Therapies that improve RV function through the 

modulation of these pathways may be an interesting strategy for PAH, as recently 

proposed.2, 10, 12  

There are strong evidences that aerobic exercise training can prevent or revert LV 

maladaptive remodeling in both experimental13-17 and clinical settings.18, 19 Whether 

similar benefits can be extended to RVF remains largely unknown. Recent evidence 

suggests that exercise is safe in patients with stable PAH.20, 21 Exercise training may 

have the unique potential to represent a unifying therapy, acting in multiple ways, and 

operating as an upstream modulator of the multiple signaling pathways involved in 

RV dysfunction in the context of PAH.  

In this study, we intend to elucidate whether exercise training performed at different 

time points, namely, before, during and after RV chronic pressure overload secondary 

to experimental PAH induced by monocrotaline could prevent cardiac dysfunction 

and remodeling, and modulate the main signaling pathways activated in PAH.  

	
  



89	
  

METHODS 

Animal experiments were performed according to the Portuguese law on animal 

welfare and conform to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85–23, 

Revised 1996). The ethical committee of the University of Porto, Portugal approved 

all studies.   

Male Wistar rats (n=110; age=4 weeks; Charles River Laboratories, Barcelona) were 

housed in groups of 5 rats/cage, in a controlled environment at a room temperature of 

22°C, with inverted 12:12-h light-dark cycle, in order to match animals handling and 

training with their most active period, and had free access to food and water. Animals 

were randomly submitted to four different experimental protocols (supplementary 

data; Figure 1S): i) sedentary injected with MCT or vehicle (SED+MCT, n=25 and 

SED+Control, n=10; respectively), ii) 4 weeks-exercise training before MCT or 

vehicle injection (EXbefore+MCT, n=15 and EXbefore+Control, n=10), iii) 4 weeks-

exercise training after MCT or vehicle injection (EXafter+MCT, n=15 and 

EXafter+Control, n=10) and iv) 2 weeks-exercise training after 2 weeks of MCT or 

vehicle injection (EXtreat+MCT, n=15 and EXtreat+Control, n=10), a time point 

where significant elevation of RV pressure is already present.22 Exercise groups were 

designed to study the effects of pre-conditioning (EXbefore+MCT), training after the 

beginning of PAH (EXafter+MCT) and training after PAH establishment 

(EXtreat+MCT). All animals received one subcutaneous injection of MCT (60 mg/kg, 

Sigma, Barcelona, Spain) or an equal volume of vehicle (1 mL/kg of saline) at the 8th 

week of living. Regarding the exercise training protocol, after 1 week of habituation, 

animals exercised for 60 minutes/session, with a running speed of 30 meters/minute, 

no grade, 5 days/week for 4 weeks (estimated work rate of 70% maximum oxygen 
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consumption).23 In the last week of training it was necessary to decrease the intensity 

from 30 m/min to 25 m/min in EXafter+MCT and EXtreat+MCT in order to allow all 

animals to perform 60 min of running. Ten animals from SED+MCT, four animals 

from EXbefore+MCT, three animals from EXafter+MCT and three animals from 

EXtreat+MCT died during the last week of protocol.  

For the survival studies, additional 80 animals were randomly divided as follows: 

SED+Control (n=5), SED+MCT (n=15), EXbefore+Control (n=5), EXbefore+MCT 

(n=15), EXafter+Control (n=5), EXafter+MCT (n=15), EXtreat+Control (n=5), and 

EXtreat+MCT (n=15), and submitted to their respective protocols. After that, their 

movement was confined to the cages’ area from day 28 until day 42 after MCT 

injection, which was the study endpoint. 

 

Measurements 

At day 28-29 after MCT or vehicle administration, animals were prepared for bi-

ventricular hemodynamic evaluation with pressure-volume catheters. At the end of 

the experiments, samples from RV were collected and stored accordingly for 

microscopy (cross sectional area and fibrosis measurements), RT-PCR (GAPDH, ET-

1, TNF-alpha, VEGF-A and IL-10) and protein analysis (SERCA2a, myosin heavy 

chain isoforms, BN-PAGE analysis of oxidative phosphorylation system organization 

and in-gel activity of complex V, ATPsynthase beta, and 3-nitrotyrosine). For an 

expanded Material and Methods section, please see the online-only Data Supplement. 

 

Statistical Analysis 

All data are presented as mean±SEM. Kolmogorov-Smirnov test was performed to 

check the normality of the data. Kruskal-Wallis test followed by Dunns test was used 
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for non-normal data while two-way ANOVA with a Students-Newman Keuls post-

hoc test was used for normally distributed data. All statistical analysis was performed 

with Graph Pad Prism software (version 5.0).  Kaplan–Meier survival analysis and the 

Gehan–Breslow test was performed, and pairwise comparisons were made using the 

Holm–Sidak method. Results were considered significantly different when P<0.05. 
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RESULTS 

Effects of exercise training on morphometric characteristics 

Table 1 summarizes all the analyzed parameters. Body weight loss was observed in 

SED+MCT (-20%) and EXtreat+MCT (-13%) (P<0.001). Exercise training prevented 

body weight loss in EXbefore+MCT and EXafter+MCT groups. MCT induced RV 

hypertrophy in sedentary animals (P<0.001 vs. SED+Cont). Exercise training partially 

reverted this effect in all trained groups that received MCT injection 

(EXbefore+MCT, EXafter+MCT and EXtreat+MCT) as shown by the RV/BW and 

RV/LV ratio (P<0.01 vs. SED+MCT). MCT administration induced hypertrophy at 

the level of the cardiomyocytes in all MCT-treated groups (P<0.001 vs. respective 

control group). EXbefore+MCT exhibited significantly less hypertrophy when 

compared to all other MCT-treated groups (P<0.001). EXafter+MCT and 

EXtreat+MCT presented cardiomyocyte hypertrophy similar to SED+MCT. 

MCT treatment did not induce any changes in LV morphometric parameters. There 

were no differences in LV parameters among control groups. 

Lung weight was significantly increased in all MCT-treated groups (P<0.001). Lung 

to body weight ratio was attenuated in EXbefore+MCT and EXafter+MCT groups 

(P<0.05 vs. SED+MCT).  

 

Exercise training averts RV diastolic dysfunction in MCT-treated rats 

Table 2 summarizes the results from bi-ventricular hemodynamic evaluation. RVPmax 

increased in SED+MCT (+99%), EXafter+MCT (+71%) and EXtreat+MCT (+73%) 

groups (P<0.001 vs. respective control group). In EXbefore+MCT, exercise 

preconditioning prevented RVPmax increase. Heart rate was reduced in SED+MCT 

(P<0.001 vs. SED+Control) and normalized in all MCT-trained groups. Figure 1 
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shows typical RV PV-loops representative from all groups during IVC occlusion from 

which ESPVR, EDPVR and Ea were obtained.  Right ventricle Ea increased in 

SED+MCT group as compared with SED+Cont group (Figure 1-A). Exercise training 

induced a decrease in Ea but significance was obtained only in EXafter+MCT as 

compared with SED-MCT group (P<0.05). ESPVR significantly increased in SED-

MCT and EXbefore+MCT groups in comparison to their respective controls (P<0.05), 

whereas in EXafter+MCT and EXtreat+MCT there was a smaller increase in ESPVR 

(P<0.05 vs. SED+MCT). 

Diastolic function was markedly impaired in SED+MCT group, namely there was an 

increase in end-diastolic pressure and a longer RV time constant tau (P<0.01 vs. all 

other groups). Exercise training normalized both end-diastolic pressure and tau in all 

three MCT-trained groups. Peak rate of RV pressure fall was increased in all MCT-

treated groups but significance was only present in EXbefore+MCT (P<0.01) and 

EXafter+MCT (P<0.05) groups in relation to their respective control pairs. Right 

ventricle EDPVR was increased in SED+MCT, as compared to SED+Control 

(P<0.001) and to all MCT-trained groups (P<0.001). It was also decreased in all 

Control-trained groups (P<0.05 vs. SED+Control).  

Regarding the LV, SED+MCT presented a significant decrease in Pmax and increase in 

tau (P<0.01 vs. SED+Control). Exercise training normalized these alterations in all 

MCT-trained groups. 

 

Exercise training prevents pathological remodeling in MCT-treated rats 

Right ventricular SERCA2a protein expression (Figure 2-A) was significantly 

reduced in SED-MCT (P<0.001 vs. all groups), whereas normal values were observed 

in all MCT-trained groups. 
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A significant increase in the beta/alpha-MHC isoform ratio from RV was found in 

SED+MCT groups (P<0.05 vs. respective control group) (Figure 2-B). All the MCT-

trained groups predominantly expressed more alpha-MHC (lower ratio beta/alpha-

MHC) and a significant difference was present in both EXbefore+MCT and 

EXafter+MCT groups (P<0.05 vs. SED+MCT; P<0.01 vs. respective control groups). 

Exercise training induced an increase in beta/alpha-MHC isoform ratio in control 

groups and significance was achieved in EXbefore+Control and EXafter+Control 

(P<0.01 vs. SED+Control).   

ET-1 gene expression was quantified in the RV (Figure 2-C) and LV (supplementary 

data; Figure 2S). A significant increase of ET-1 mRNA was observed in both 

ventricles from SED+MCT (P<0.001 vs. SED+Control), while in all MCT-trained 

groups its expression was significantly down-regulated (P<0.05 vs. SED+MCT). 

Significant down-regulation of VEGF mRNA was observed in SED+MCT in 

comparison to all groups (P<0.05). Exercise training completely prevented or reverted 

any alteration in VEGF mRNA on MCT-trained groups (Figure 2-D).  

 

Exercise training prevents RV fibrosis and RV myocardial inflammation in MCT-

treated rats 

Significant amounts of collagen were detected in SED+MCT in comparison to all 

control and other MCT-treated groups (P<0.001). Exercise training normalized 

collagen deposition in all MCT-trained groups. Results and representative images are 

shown in Figure 3-A and B. 

An elevated inflammatory state was observed in SED+MCT group as evidenced by 

the increased TNF-alpha/IL-10 mRNA ratio (P<0.05 vs. all groups). Exercise training 
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improved the anti-inflammatory state in all MCT-trained groups (P<0.05 vs. 

SED+MCT). 

 

Exercise training prevents RV mitochondrial oxidative phosphorylation and 

oxidative damage in MCT-treated rats 

The BN-PAGE densitometric analysis revealed no significant differences in the 

oxidative phosphorylation complexes organization, as can be depicted from the 

representative density traces for complexes’ bands (Figure 4-A). Complex V in-gel 

activity (Figure 4-B) was significantly impaired in SED+MCT (P<0.05 vs. 

SED+Control). Exercise training completely rescued the RV ability to aerobically 

produce ATP in the MCT-trained groups (P<0.05 vs. SED+MCT). Western blot 

analysis of ATP synthase subunit beta was performed in order to validate the protein 

expression profile observed and no differences were detected (Figure 4-C).  

In order to investigate if the decreased mitochondrial complex V activity could be 

related with oxidative damage, membranes containing mitochondrial complexes from 

SED+Cont and MCT-treated animals separated by BN-PAGE were probed for 3-

nitrotyrosine (Figure 4-D). Significant levels of mitochondrial membrane protein 

nitration were found only in SED-MCT, with the Complex V as the main target of 

this posttranslational modification (P<0.001 vs. SED+Control). Exercise training 

prevented nitration in all MCT-trained groups (P<0.001 vs. SED+MCT). 

 

Exercise training improved survival rate in MCT-treated rats 

Survival rate 42 days after MCT injection was 73% in EXafter+MCT group, 25% in 

EXbefore+MCT group, 16% in EXtreat+MCT group and 13% in SED+MCT group. 

A significant improvement on survival curves was observed in all MCT-trained 
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animals (P<0.05). Mortality rate was null in Control groups. Results are illustrated in 

Figure 5. 
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DISCUSSION 
 

The present study demonstrates that exercise training at different time-points 

exerts a positive impact in the RV response to chronic pressure overload, protecting 

from cardiac dysfunction and improving survival in an experimental model of PAH. 

This suggests that exercise can act as an upstream modulator of several pathological 

pathways activated in the RV during PAH. The benefits of exercise training may be 

associated with the prevention of calcium handling disturbances, alpha to beta-MHC 

shift, decreased neurohumoral activation, collagen deposition and inflammation and 

preserved oxidative phosphorylation through the reduction of mitochondrial oxidative 

damage.  

The recent recognition that exercise training can be safely performed by PAH 

patients,20, 21 justifies the urgent need to investigate the impact of exercise training on 

the overloaded RV. In the present study, we demonstrate that exercise training at 

different time points of MCT-induced PAH improves survival rate and ameliorates 

RV function. In animals submitted to preconditioning (EXbefore+MCT) the RV was 

protected from significant afterload elevations as well as from cardiac hypertrophy, 

highlighting that cardioprotection can be sustained for several weeks after the 

cessation of exercise training. Those animals that were trained during the 

development (EXafter+MCT) and after the establishment of RV pressure overload 

(EXtreat+MCT) experienced levels of pressure overload and cardiomyocyte 

hypertrophy comparable to SED+MCT, nevertheless their RV diastolic function was 

completely preserved. These results contrast with those published by Handoko et al.,24 

who reported worsening of the RV cardiac function by exercise training in rats with 

PAH induced by the same dosage of MCT that we used. It is known that 

improvements in cardiovascular function induced by exercise are intensity-dependent 
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and require higher intensities of training for maximal benefit.25, 26 In the present work, 

animals were submitted to a longer and more intense exercise-training program, 

which may explain the beneficial effects of exercise obtained in our study.  

Right ventricular function is widely accepted as the main prognostic factor in 

PAH.1 The signaling pathways activated in the RV during the progression from 

hypertrophy to failure secondary to PAH2-10, 12, 27 show some similarities to those 

activated in LV failure.11, 28 ET-1 activation is an important player in PAH 

pathophysiology and its blockade is part of the therapeutic options currently used in 

PAH.8, 29-31 We found that ET-1 mRNA levels were increased in the RV of 

SED+MCT group, but they were normalized in all MCT-trained groups. Exercise-

induced inhibition of ET-1 might explain the improvement of RV function, as well as, 

the preservation of LV function.8 Deregulation of the extracellular matrix with 

collagen deposition and fibrosis is another hallmark of RV dysfunction.2 The 

SED+MCT animals presented increased levels of RV fibrosis that was accompanied 

by a pro-inflammatory state, with an imbalance between TNF-alpha and IL-10,32, 33 

favoring the formation of cardiac fibrosis.33 Exercise training completely prevented 

the development of RV fibrosis and promoted an anti-inflammatory status (decreased 

TNF-alpha/IL10 ratio). The switch from alpha- to beta-MHC is widely used as an 

indicator of maladaptive cardiac remodeling. In accordance with previous reports,4 we 

found an increase in the slower beta-isoform in the RV of SED+MCT. In contrast, all 

MCT-trained groups expressed more alpha-MHC isoform, which is in line with the 

beneficial effects of exercise training previously reported in LV failure.34, 35 

Paradoxically, in our control trained animals there was also an up-regulation of the 

beta–MHC. Our observation corroborates previous findings from Hwang and 

coworkers who also described increased beta-MHC in the RV and LV of healthy rats 
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submitted to treadmill running.36 There are some evidences that an increase in 

beta/alpha-MHC ratio has no deleterious impact on cardiac structure or contractile 

function under basal conditions or in response to exercise.37, 38 In sedentary animals 

treated with MCT there was also a decrease in SERCA2a, another important feature 

of heart failure.39, 40 In opposition to SED+MCT group, we found normal SERCA2a 

protein levels in all MCT-trained animals, which are in line with their preserved 

relaxation rate. Exercise training was suggested to protect cardiac function in different 

models of cardiac failure by enhancing cardiac capillarization.15, 17, 24 We evaluated 

mRNA expression of VEGF, which was shown to reflect cardiac capillary density,17, 41 

and found that exercise training prevented its down-regulation. Moreover, a similar 

pattern of increase in cardiac hypertrophy and VEGF mRNA was observed in all 

trained groups, which is congruent with the concept that physiological cardiac growth 

is associated with enhanced angiogenesis.42  

Impaired oxidative phosphorylation can affect cardiac function by 

compromising the energetic supply of ATP to the cardiomyocytes.5 Mitochondrial 

complex V activity revealed decreased mitochondrial energy-producing ability in the 

RV from MCT-treated sedentary animals. Our observation corroborates previous 

findings reporting low ATP levels in the RV of MCT-treated rats.43 Limited 

availability of ATP can interfere with the contractile apparatus and calcium kinetics44 

and negatively affect diastolic function. Importantly, exercise training rescued 

mitochondrial oxidative phosphorylation capacity in all MCT-trained groups. As 

major sources of reactive oxygen and nitrogen species, mitochondria themselves, and 

particularly oxidative phosphorylation complexes, are highly susceptible to functional 

impairment due to oxidative and nitrative damage.45 We found increased levels of 3-

nitrotyrosine in the mitochondrial complex V from SED-MCT animals, which may 
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account for the decreased oxidative phosphorylation, as previously demonstrated in 

neuronal mitochondria.46 Importantly, exercise training prevented protein nitration in 

all MCT-trained groups, which may reflect its buffering capacity due to improved 

anti-oxidant mechanisms. This is corroborated by the results from Redout et al10 who 

showed prevention of protein nitration in the RV of MCT-treated rats with an anti-

oxidant mimetic.  

Our data strengths the hypothesis that RV dysfunction is not entirely 

dependent of cardiac overload.2, 31 Exercise training seems to provides a 

cardioprotective phenotype that allows the RV to work under overloading conditions 

with better tolerance. Similar observations were previously reported in the LV, where 

exercise training prevented cardiac dysfunction in different animal models of chronic 

pressure overload, independently of any hypotensive effect.13, 15, 17 Thus, therapeutic 

approaches aimed to specifically improve the RV performance in the presence of 

persistent overload, as occurs in PAH, may potentially be beneficial.  

 

CONCLUSIONS 

The findings from the present study indicate that exercise preconditioning, as well as 

exercise performed during or after the establishment of RV chronic pressure overload 

secondary to MCT-induced PAH averts RV dysfunction and improves survival. The 

putative mechanism for the cardioprotection at the RV level afforded by exercise 

training may include prevention of calcium handling disturbances, alpha to beta-MHC 

shift, decreased neurohumoral activation, collagen deposition and inflammation, and 

preserved mitochondrial function. Interestingly, the majority of these beneficial 

effects were independent from afterload levels. Altogether, these data highlight that 
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exercise training can be a new modulator of RV function and can represent an 

important adjunctive therapeutic option in the management of PAH patients.  
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FIGURE LEGENDS 

FIGURE 1: Representative examples of RV PV-loops obtained during inferior vena 

cava (IVC) occlusion (A) and graphic representation of derived parameters (B). Only 

animals showing volume signal in a range of 5-10 RVU47 were considered for this 

analysis  (n=5 for SED+Control, n=6 for EXbefore+Control, n=5 for 

EXafter+Control, n=5 for EXtreat+Control, n=6 for SED+MCT, n=9 for 

EXbefore+MCT, n=8 for EXafter+MCT and n=6 for EXtreat+MCT). ESPVR: end-

systolic pressure volume relation; Ea: arterial elastance; EDPVR: end-diastolic 

pressure-volume relation. Error bars are mean±SEM. *P<0.05 vs. SED+Control, 

†P<0.001 vs. respective control group and ‡ P<0.05 vs. SED+MCT. 

 

FIGURE 2:  Effects of exercise training markers of RV remodeling: A) SERCA2a 

protein expression; B) alpha/beta-MHC isoform ratio; C) ET-1 mRNA; D) VEGF 

mRNA. Error bars are mean±SEM (n=8, n=5, n=8, n=7 animals per group for 

SERCA2a, cross sectional analysis, MHC isoform and mRNA quantification, 

respectively). †P<0.05 vs. respective control group, ‡ P<0.05 vs. SED+MCT. 

 

FIGURE 3.  Effects of exercise training on RV fibrosis (A and B) and TNF-alpha/IL-

10 mRNA ratio (C). Error bars are mean±SEM (n=5 and n=7 animals per group for 

fibrosis and mRNA quantification, respectively). †P<0.05 vs. respective control group 

and ‡ P<0.05 vs. SED+MCT. 

 

FIGURE 4: Effects of exercise training on mitochondrial oxidative phosphorylation 

and oxidative stress: A) RV mitochondrial BN-PAGE profile of the experimental 

groups; B) Representative images of histochemical staining, with semi-quantitative 
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analysis of in-gel activity of complex V; C) Validation of the protein expression 

profile of ATP synthase subunit beta by Western blotting; D) Formation of 3-

nitrotyrosine in mitochondrial complex V. Error bars are mean±SEM (n=6; 3 pools of 

2 different animals, assayed in duplicate). *P<0.001 vs. SED+Control, †P<0.05 vs. 

respective control group and ‡ P<0.05 vs. SED+MCT. 

 

FIGURE 5: Impact of exercise training on survival: exercise training delayed 

mortality. All rats from EXbefore+Control, EXafter+Control and EXtreat+Control 

survived but were omitted here to improve the clarity of the graphic. MCT: 

monocrotaline pyrrole. †P<0.001 vs. respective control group and ‡ P<0.05 vs. 

SED+MCT. 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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SUPPLEMENTAL METHODS 

Hemodynamic evaluation 

Twenty four hours after ending their respective protocols, rats were anaesthetized by 

inhalation with a mixture of 4% sevoflurane with oxygen, intubated for mechanical 

ventilation (respiratory frequency 100 min-1 and weight adjusted tidal volume; 

Harvard Small Animal Ventilator- Model 683) and placed over a heating pad (37ºC). 

The right jugular vein was cannulated for fluid administration (prewarmed 0.9% NaCl 

solution) to compensate for perioperative fluid losses. A median sternotomy was 

performed to expose the heart and the pericardium was widely opened. Two 1.9F 

microtip pressure–volume conductance catheters (FTS-1912B-8018, Scisense) were 

inserted by apical puncture on the RV and LV cavity, along the ventricular long axis. 

The catheters were connected to MVP-300 conductance system through interface 

cable (PCU-2000 MPVS, FC-MR-4, Scisense), coupled to PowerLab16/30 converter 

(AD Instruments) and a personal computer for data acquisitions. After complete 

instrumentation, the animal preparation was allowed to stabilize for 15 min.  

Hemodynamic recordings were made with respiration suspended at the end of 

expiration under steady-state conditions or during preload reductions (inferior vena 

cava occlusion). Parameters from conductance catheter were recorded at a sampling 

rate of 1,000 Hz, in order to accurately capture all of the features of the pressure–

volume waveforms produced by the fast-beating rat hearts. Data were stored and 

analyzed with Millar conductance data acquisition and analysis software (PVAN3.5).  

 

Measured parameters 

The following parameters were calculated: heart rate (HR), maximum pressure (Pmax), 

minimum pressure (Pmin), end-systolic pressure (ESP), end-diastolic pressure (EDP), 
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peak rate of pressure rise (dP/dtmax), peak rate of pressure fall (dP/dtmin) and time 

constant of ventricular pressure decay (Tau). RV end-systolic pressure–volume 

relation (ESPVR), arterial elastance (Ea) and end-diastolic pressure–volume relation 

(EDPVR) were determined from pressure–volume loops recorded during transient 

occlusion of the inferior vena cava by external compression of the vessel. Because the 

parallel conductance volume varied widely by the amount and speed of the saline 

injection, we opted to use relative volume units (RVU) instead of microliters, which 

has the disadvantage of failing to give precise estimation of volume intercepts of P-V 

relations but it allows reasonable ESPVR, Ea and EDPVR assessment once the slope 

of these indexes are independent of units calibration.1  

 

Tissue Preparation 

Once hemodynamic data collection was completed, animals were euthanized by 

exsanguination and the heart, lung and right gastrocnemius muscle were excised and 

weighed. Under binocular magnification (x3.5), the LV+septum was dissected from 

the RV and weighed separately. Heart weight was normalized to body weight 

(BW/BW). RV was normalized to BW (RV/BW) and LV (RV/LV). Samples from 

RV were fixed and prepared for light microscopy (LM) following routine procedures 

or frozen with liquid nitrogen for mRNA or protein studies. 

 

Microscopic evaluation 

RV samples extracted from the basal, intermediate, and apical cardiac regions of each 

animal were fixed, paraffin-embedded, sectioned and mounted on silane-coated 

slides. RV blocks were embedded in the upright position in order to distinguish the 

endocardium, midwall, and the epicardium of the RV free wall in cross sections. For 
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cardiomyocytes surface area (CSA) measurements deparaffinised sections were 

stained for haematoxylin-eosin, photographed and analyzed as previously explained.2 

In order to determine the amount of cardiac fibrosis, RV sections were stained with 

Picrosirius red and quantified as described before.3 

 

Right Ventricular Mitochondrial isolation 

Right ventricle mitochondria isolation was performed using the conventional methods 

of differential centrifugation, as previously described.4 All procedures were 

performed at 0-4°C. Briefly, after excised the samples from right ventricles (4 

independent experiments; pools of n=2 different animals) were immediately minced 

in an ice-cold isolation medium containing 250 mM sucrose, 0.5 mM EGTA, 10 mM 

HEPES-KOH (pH 7.4), and 0.1% defatted BSA (catalog. no A6003, Sigma). The 

minced blood-free tissue was resuspended in isolation medium containing protease 

subtilopeptidase A type VIII (catalog no. P5380, Sigma; 1 mg/g tissue) and 

homogenized with tightly fitted Potter-Elvehjen homogenizer and Teflon pestle. The 

suspension was incubated for 1 minute (4°C) and rehomogenized. A 0.5 mL aliquot 

of cardiac muscle homogenate was reserved for Western blotting analysis of specific 

protein targets and the remaining homogenate was centrifuged at 14,500 g during 10 

minutes. The supernatant fluid was decanted, and the pellet, essentially devoid of 

protease, was gently resuspended in isolation	
   medium. The suspension was 

centrifuged at 750 g for 10 minutes, and the resulting supernatant was centrifuged at 

12,000 g for 10 minutes. The pellet was resuspended and repelleted at 12,000 g for 10 

minutes. The final pellet, containing the mitochondrial fraction, was gently 

resuspended in a washing medium containing 250 mM sucrose, 10 mM HEPES-KOH, 

pH 7.4. Mitochondrial protein concentration was spectrophotometrically estimated 
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with the colorimetric method “RC DC protein assay” (Bio-Rad) using bovine serum 

albumin (BSA) as standard.  

	
  
Blue-native PAGE separation of mitochondria membrane complexes and in-gel 

activity of respiratory chain complex V 

BN-PAGE was performed using the method described by Schagger and von Jagow 5. 

Briefly, mitochondrial fractions (200 µg of protein) from each experimental group 

were pelleted by centrifugation at 20,000g for 10 minutes and then resuspended in 

solubilization buffer (50 mM NaCl, 50 mM Imidazole, 2 mM ɛ-amino n-caproic acid, 

1 mM EDTA pH 7.0) with 1 % (w/v) digitonin. After 10 minutes on ice, insoluble 

material was removed by centrifugation at 20,000g for 30 minutes at 4ºC. Soluble 

components were combined with 0.5 % (w/v) Coomassie Blue G250, 50 mM ɛ-amino 

n-caproic acid, 4 % (w/v) glycerol and separated on a 4-13 % gradient acrylamide 

gradient gel with 3.5 % sample gel on top. Anode buffer contained 25 mM Imidazole 

pH 7.0. Cathode buffer (50 mM tricine and 7.5 mM Imidazole pH 7.0) containing 

0.02 % (w/v) Coomassie Blue G250 was used during 1 hour at 70 V, the time needed 

for the dye front reach approximately one-third of the gel. Cathode buffer was then 

replaced with one containing only 0.002 % (w/v) Coomassie Blue G250 and the 

native complexes were separated at 200 V for 4 h at 4 ºC. A native protein standard 

HMW-native markers (GE Healthcare, Buckinghamshire, UK) was used. The gels 

were stained with Coomassie Colloidal for protein visualization or incubated at 37 ºC 

with 35 mM Tris, 270 mM glycine buffer, pH 8.3, supplemented with 14 mM MgSO4, 

0.2 % (w/v) Pb(NO3)2, and 8 mM ATP for evaluation of the ATP hydrolysis activity 

of complex V 6. Lead phosphate precipitation that is proportional to the enzymatic 

ATP hydrolysis activity, was stopped by 50 % (v/v) methanol (30 min), and the gels 

were then transferred to water. Gels were scanned in Molecular Imager Gel Doc XR+ 
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System (Bio-Rad, Hercules, CA, USA). Band detection and analysis were performed 

using QuantityOne Imaging software (v4.6.3, Bio-Rad). 

Western blotting analysis 

Equivalent amounts of total protein from each group were electrophoresed on a 12.5 

% SDS-PAGE as described by Laemmli.7 Gels containing total proteins or 

mitochondrial proteins (separated by 2-D BN-PAGE) were blotted onto a 

nitrocellulose membrane (Whatman®, Protan®) and nonspecific binding was blocked 

with 5 % (w/v) dry non-fat milk in TBS-T (100 mM Tris, 1.5 mM NaCl, pH 8.0 and 

0.5 % Tween 20). Membranes were then incubated with primary antibody solution 

(1:1000 dilution; GAPDH, Santa Cruz, sc-47724; ATP synthase subunit beta, Abcam, 

ab-14730; mouse anti-SERCA2 ATPase, Abcam, ab2861; 3-nitrotyrosine, Chemicon, 

Clone 2A8.2). After 2 hours incubation, the membrane was washed with TBS-T and 

incubated with anti-mouse or anti-rabbit IgG peroxidase secondary antibody (1:1000 

dilution, Amersham Pharmacia Biotech). Immunoreactive bands were detected with 

enhanced chemiluminescence reagents (ECL, Amersham Pharmacia Biotech) 

according to the manufacturer's procedure and images were recorded using X-ray 

films (Kodak Biomax light Film, Sigma). The films and the gels were scanned in 

Molecular Imager Gel Doc XR+ System (Bio-Rad) and analyzed with QuantityOne 

software version 4.6.3 (Bio-Rad, Hercules, CA). Equal loading of membranes was 

confirmed by staining the membranes with Ponceau S or GAPDH immunoblotting.  

 

MHC isoform determination 

Right ventricle samples were weighed and transferred to a glass homogenizer. A 1:19 

ratio of 100 mM phosphate buffer, pH 7.4, containing 0.02% bovine serum albumin 

was added. Tissue sections were thoroughly homogenized with tightly fitted Potter-



123	
  

Elvehjen homogenizer and Teflon pestle. Total protein concentration was 

spectrophotometrically assayed with the colorimetric method “RC DC protein assay” 

(Bio-Rad) using bovine serum albumin (BSA) as standard. Alpha- and beta-isoforms 

of cardiac myosin heavy chain were separated by gel electrophoresis following the 

procedure described by Talmadge and Roy.5 The amount of protein run on the gel was 

1 mg per lane. To avoid inter-gel variation, one sample from each of the groups 

studied was applied in the same gel. The stacking gel consisted of 30% glycerol and 4 

% acrylamide: N,N’-methylene-bis-acrylamide in the ratio of 50:1, 70 mM Tris (pH 

6.7), 4 mM EDTA, and 0.4% sodium dodecyl sulfate (SDS). The separating gels were 

composed of 30% glycerol, 8% acrylamide-bis (50:1), 0.2 M Tris (pH 8.8), 0.1 M 

glycine, and 0.4% SDS. Polymerization was initiated with 0.05% N,N,N’,N’-

tetramethylethylenediamine and 0.1% ammonium persulfate. The gels were run in a 

Mini-Protean system (Bio-Rad) at 4°C. The running conditions were 70V (constant 

voltage) for 30 hours. The gels were stained with Coomassie Colloidal, scanned in 

Molecular Imager Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA) and optical 

density analysis of MHC bands was performed using QuantityOne Imaging software 

(v4.6.3, Bio-Rad). 

 

Relative quantification of mRNA 

Two-step real-time RT-PCR was performed as previously described.8 Briefly, after 

total mRNA extraction (no. 74124; Qiagen), standard curves were obtained for each 

gene correlating (R ≥ 0.98) the mRNA quantities in graded dilutions of a rat cardiac 

tissue sample with the respective threshold cycles (second derivative maximum 

method). Equal amounts of mRNA from every sample underwent three separate two-

step realtime RT-PCR experiments for each gene, using SYBR green as marker (no. 
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204143; Qiagen). GAPDH was used as internal control and results are relative to the 

mean obtained for the SED+Control group and normalized for GAPDH (fold 

increase). All the analysis was performed in duplicates. Specific PCR primer pairs for 

the studied genes are presented in Table S1. 
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SUPPLEMENTAL TABLES 

 

Table S1: Primers used in mRNA quantification by real-time RT-PCR 

Gene  Sequence 5’è3’ 

GAPDH 
fw: 

rev: 

TGG CCT TCC GTG TTC CTA CCC 

CCG CCT GCT TCA CCA CCT TCT 

ET-1 
fw: 

rev: 

CGG GGC TCT GTA GTC AAT GTG 

CCA TGC AGA AAG GCG TAA AAG 

TNF-alpha 
fw: 

rev: 

TGG GCT ACG GGC TTG TCA CTC  

GGG GGC CAC CAC GCT CTT C 

VEGF-A 
fw: 

rev: 

GTA CCT CCA CCA TGC CAA GT 

GCA TTA GGG GCA CAC AGG AC 

IL-10 
fw: 

rev: 

GAA GGA CCA GCT GGA CAA CAT 

CCT GGG GCA TCA CTT CTA CC 

GAPDH: glyceraldehyde 3-phosphate dehydrogenase; ET-1: endothelin-

1; TNF-alpha; tumor necrosis factor-alpha; VEGF-A: vascular 

endothelial growth factor-A; IL-10: interleukin-10; fw: forward; rev: 

reverse. 



126	
  

SUPPLEMENTAL FIGURES AND FIGURE LEGENDS 

 

 

Figure S1: Illustration of the study design. The effects of exercise training were 

assessed at different time points of the disease. Animals were randomly divided as 

follows: i) sedentary animals injected with MCT or vehicle (SED+Control and 

SED+MCT, respectively), ii) 4 weeks-exercise training before MCT or vehicle 

injection (EXbefore+MCT and EXbefore+Control, respectively), iii) 4 weeks-exercise 

training after MCT or vehicle injection (EXafter+MCT and EXafter+Control, 

respectively) and iv) 2 weeks-exercise training after 2 weeks of MCT or vehicle 

injection (EXtreat+MCT and EXtreat+Control, respectively). The experimental 

design was programmed in order that all animals could receive one subcutaneous 

injection of MCT or vehicle solution at the age of 8 weeks. White square represents 

movement confined to the cage’s dimensions while grey squares represent the period 

of exercise training. After ending their respective protocols, all animals were 

submitted to hemodynamic evaluation (H.E). 
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Figure S2: Effects of exercise training in LV ET-1 mRNA. Error bars are 

mean±SEM (n=7 animals per group). †P<0.001 vs. respective control group and ‡ 

P<0.01 vs. SED+MCT. 
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4. GENERAL DISCUSSION  

 In the present work, it was hypothesized that enhancing the ability of the heart 

to support pressure overload would prevent cardiac dysfunction and failure, and 

decrease the magnitude of activation of signaling pathways associated with cardiac 

maladaptation. Our data clearly shows that moderate exercise training induces a 

cardioprotective phenotype that improves the cardiac response to acute and chronic 

cardiac pressure overload. Exercise prevented cardiac dysfunction and attenuated the 

activation of several mediators related with the development of maladaptation. 

Moreover, intermittent chronic overload induced by beta-adrenergic stimulation with 

dobutamine promoted several cardiac adaptations that resembled those induced by 

exercise training and conferred protection to acute pressure overload.  

In the first and second studies, we show that two hours of sustained 

constriction of the descending thoracic aorta results in severe functional impairment 

of the heart of sedentary animals. Our observation corroborates previous conclusions 

from both the RV (44, 86, 221) and LV (147, 179), that the normal healthy heart has a 

limited ability to tolerate acute workload demands. On its turn, exercised animals 

tolerated the two hours of pressure overload, without notorious deterioration of 

cardiac function, which is conform to the cardioprotective effects of exercise training 

against other cardiac insults (25, 38, 47, 49, 69-71, 105, 109, 150, 270). Reduced 

cardiac performance of sedentary animals was associated with disturbed calcium 

homeostasis (suggested by altered dP/dtmin, dP/dtmax, and increased mitochondrial 

swelling), increased apoptosis, NF-kB activation, and oxidative damage (especially of 

mitochondrial proteins), all of which have been implicated in the process of 

maladaptive remodeling (39, 68, 101, 125, 126, 158, 199, 243, 246, 269, 274). 

Morphological analysis revealed greater inter- and intra-group variability in terms of 
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cardiomyocytes’ injury threshold to the impact of the acute pressure overload. In the 

same microscopic field, it was possible to observe that some cardiomyocytes 

exhibited more damage (e.g. intracellular edema, mitochondrial swelling and 

apoptosis), and reactivity to the overload  (e.g. increased Nf-KB expression), than 

others. These observations are in accordance with the notion that cardiomyocytes are 

characterized by structural and functional heterogeneity, which becomes more 

obvious when challenged by demanding situations (170, 194, 204, 223), where the 

most susceptible are injured, die and eventually are replaced (11, 62, 121, 122). Of 

note, although submitted to the same magnitude of overload, these alterations were 

scarcer in the heart from exercised animals, supporting the notion that exercise 

training provides chronic cardiac adaptations that translate into improved homeostasis 

(increased tolerance) and, consequently, less activation of signaling pathways 

implicated in the maladaptive remodeling of the heart. Exercise training induced 

cardiomyocyte growth (and eventually hyperplasia), which, according to the Laplace 

law of the heart, result in a relatively smaller increase in wall tension per unit volume 

of myocardium (5). Preserved dP/dtmin (study I and II) after acute pressure overload 

and increased SERCA2a expression (study II), indirectly suggest improved calcium 

handling (51, 177) and thus, lower cytosolic calcium accumulation, explaining the 

reduced mitochondrial swelling and lower levels of apoptosis found in study I (71, 72, 

238). Also, exercise induced an increase in phospho-Akt, which is known to modulate 

SERCA2a activity and LTCC stability, thus improving calcium kinetic and 

cardiomyocyte contractility (35, 76, 129, 176). Reduced apoptosis, as well as lower 

levels of total oxidative damage may be related with increased anti-oxidant defenses, 

namely MnSOD (71, 253). The lower damage to mitochondrial proteins (study I) 

together with increased mitochondrial ATP production (study II) in exercised animals 
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suggest increased mitochondrial functionality (28, 33, 80, 108, 159, 202, 250), thus 

contributing to the higher cardiac performance during pressure overload. A schematic 

representation of these findings is presented in Figure 2 and 3.  
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Figure 2- Exercise training increases tolerance to left ventricular acute pressure overload. 
Exercise training induced several chronic adaptations that translated into an enhanced cardiac 
performance against pressure overload and its deleterious effects such as structural derangements and 
biochemical alterations. Our main findings are reported in the yellow rectangles. Detailed information 
is provided in the text. Ca2+ calcium; K+: potassium; Na+: sodium; LTCC: L-type calcium channels; 
RyR: ryanodine receptor; SERCA: sarcoplasmic reticulum calcium-ATPase; PLN: phospholamban; 
RONS: reactive oxygen and nitrogen species; MnSOD: manganese superoxide dismutase; Nf-KB: 
nuclear factor kappa B; Cyt C: cytochrome C. 
 

In the second study, we also evaluated whether the development of a 

cardioprotective phenotype is uniquely provided by exercise training, or if it could be 

induced by other stimuli. We hypothesized that using a stimulus of different nature 

that mimicked the duration and magnitude of the overload induced by exercise 

training could result in an adaptive phenotype. To test our hypothesis, we used 

dobutamine, a beta 1- and 2-adrenoreceptor agonist in the concentration of 2 mg/kg 
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(s.c.). By performing a series of acute hemodynamic studies, we found that this 

dosage reasonably mimics the duration and magnitude of an acute cardiac overload 

imposed by the exercise training protocol (~40% increase in heart rate and ~15% 

increase in peak systolic pressure) (175). This strategy allowed us to have a certain 

control over the magnitude and duration of the hemodynamic demand that was 

imposed. Animals chronically treated with 2 mg/kg of dobutamine (5 days/week 

during 8 weeks) developed an overall cardiac phenotype that resembled several 

features of adaptive remodeling. Namely, they developed hypertrophy, with normal 

levels of osteopontin-1, collagen and calcineurin, which are typically elevated in 

maladaptive remodeling (16, 176, 271). Also, similar MHC isoforms composition as 

well as a similar increase in phospho-Akt/mTOR, total SERCA2a and oxidative 

phosphorylation was observed in both exercised and dobutamine-treated animals. In 

order to test whether the cardiac phenotype induced by dobutamine was 

cardioprotective, we submitted dobutamine-treated animals to sustained acute 

pressure overload for two hours. Remarkably, both exercised and dobutamine-treated 

animals exhibited a similar performance in response to the overload, preventing 

cardiac dysfunction. Although our data does not allow to make any cause-effect 

assumption, it is possible that the above-mentioned adaptations (cardiomyocyte 

hypertrophy, increased SERCA2a, phospho-Akt/mTOR and mitochondrial activity) 

may partially explain the increased tolerance to pressure overload (Figure 3). These 

data suggest that the cardiac overload induced by chronic intermittent beta-adrenergic 

stimulation resulted in an adaptive phenotype, favoring the notion that the duration of 

overload may indeed be a determinant factor for the development of an adaptive or 

maladaptive phenotype (152). Indeed, even the exercise benefits seem to be time-

dependent since prolonged bouts of exercise performed for long periods have been 
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associated with the development of several features of maladaptive phenotypes such 

as cardiac dysfunction, fibrosis and cellular death (4, 5, 13, 42, 109, 186, 192, 201, 

261, 263). Altogether, these data suggest that cardiac adaptation or maladaptation can 

be a consequence of the severity and/or duration of the stimuli together with improper 

recovery, independently of the stimuli’s nature. When the imposed stress is too severe 

or prolonged, the cells might not be able to recover homeostasis, their integrity can be 

compromised and cellular death pathways might be favored, progressively 

!!!!!!!! !"#$%
!"#$%

&'(!)%

*+,%

(-(%+.!!%

!"#$%

!"#$%

+.!!%

/012"345565"2%78"34%

4912"345565"2%78"34%

!):1%

!;.<(%

*2=14/0%&-01>47/7%

Normal collagen levels 

Increased oxidative phosphorylation 

!  SERCA2a expression 

Normal beta/alpha-MHC ratio 

!"#$%
%

!"#$%
%

!"#$%
%

).*%
)?*%

@&ABC%

8B,D).!
ATP!

,D).!

" Calcineurin 

E-84212=8>/3%F4047%

;-=GH2=H5"71%

Normal Osteopontin 

'93477/I4%J4F2"J"K=0%=L%'!M%

*2=J63K=0%=L%'!M%82=14/07%

MM*%

*NCA%

N0324"74O7K;65"14%

J4324"74O824I4017%

 

Figure 3- Chronic intermittent workload induced by dobutamine, promoted cardiac adaptations 
(yellow rectangles) that resembled exercise training. These alterations, together with cardiomyocyte 
hypertrophy, could underlie the increased tolerance to left ventricular acute pressure overload. Detailed 
information is provided in the text. MMP: metalloproteinase; Ca2+: calcium; LTCC: L-type calcium 
channels; RyR: ryanodine receptor; SERCA: sarcoplasmic reticulum calcium-ATPase; PLN: 
phospholamban; PI3K: phosphoinositide 3-kinase; Akt: protein kinase B; GSK-3: glycogen synthase 
kinase; mTOR: mammalian target of rapamycin; p-NFAT: phosphorylated nuclear factor of activated T 
cells; NFAT: dephosphorylated nuclear factor of activated T cells; MHC: myosin heavy chain. 
 
   

contributing to maladaptation (40, 75, 137, 138, 171). On its turn, if there is a perfect 

match between the stress demands and the cellular responses, pro-survival pathways 
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are preferentially activated, an improved homeostatic capacity (increased tolerance) 

can be attained (40), and an adaptive phenotype takes place. 

After showing that exercise training increased tolerance to acute pressure 

overload, we wanted to know if the same would be true against chronic pressure 

overload. To accomplish this aim we changed our focus to the RV and used a model 

of RV chronic pressure overload induced by monocrotaline (MCT). MCT is a 

pyrrolizidine alkaloid found in the plant Crotolaria spectabilis. After being 

bioactivated in the liver, its bioactive metabolite selectively injures the vascular 

endothelium of the lung and induces an increase in vascular resistance and pulmonary 

arterial pressure, with subsequent RV hypertrophy (27, 124, 228). With a dosage of 

60 mg/kg, RV pressure overload is observed around 14 days after its administration 

(228), and RV hypertrophy progresses to failure and death around day 28 (45, 66, 94, 

99, 100). Therefore, we trained rats at different time points of RV pressure overload 

(before, during and after its establishment) and evaluated the preventive and 

therapeutic roles of exercise training. We hypothesized that exercise training would 

act as an upstream modulator of the multiple signaling pathways implicated in RV 

dysfunction and failure (20, 31, 45, 66, 98, 131, 163, 209, 216). Our results show that 

exercise training performed before (preconditioning), during or after RV chronic 

pressure overload establishment prevents from cardiac dysfunction and improves 

survival. The underlying mechanisms may be associated with the prevention of 

calcium handling abnormalities (128, 220, 265) and alpha to beta MHC shift (96, 

200), capillary density preservation (76, 93, 94), decreased neurohumoral activation 

(14, 46, 79), collagen deposition and inflammation (2, 139, 142, 176, 222, 268), 

preserved mitochondrial function and reduced oxidative damage (2, 217, 235, 253) 

that was found in all exercised groups. A schematic overview of these findings is 

provided in Figure 4. Our data, together with previous work from other groups (20, 59, 

216) suggest that therapies that improve RV function through the modulation of these 

pathways may be an interesting strategy for PAH prevention and treatment. The 

overall improvements exhibited by those animals that were exercised during or after 

RV overload were independent of any pulmonary hypotensive effect of exercise 

training. Indeed, animals from these groups showed RV peak systolic pressure values 

comparable to their sedentary overloaded counterparts, but without compromise of 

cardiac function. From here it is possible to conclude that exercise training provides a 
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cardioprotective phenotype that allows the RV to work under overloading conditions 

with better tolerance. Similar observations were previously reported in the LV, where 

exercise training was demonstrated to prevent cardiac dysfunction in different animal 

models of chronic pressure overload, independently of any hypotensive effect (21, 76, 

176). Exercise preconditioning (exercise before RV overload) prevented from 

significant afterload elevation which, together with previous studies (47, 49, 69, 70), 

support the notion that the exercise benefits can be sustained for several weeks after 

cessation.  Although our data does not provide any explanation for the lower RV 

overload observed in this group, it is possible that the four weeks of training that 

anticipated MCT administration were sufficient to provide a more resistant vascular 
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Figure 4- Exercise training prevents against right ventricular chronic pressure overload damage. 
Exercise training induced a series of improvements (yellow rectangles) that collectively were 
associated with improved cardiac function. VEGF: vascular endothelial growth factor; ET-1: 
endothelin-1; TNF-alpha: tumor necrosis factor-alpha; IL-10: interleukin-10; Ca2+: calcium; K+: 
potassium; Na+: sodium; LTCC: L-type calcium channels; RyR: ryanodine receptor; SERCA: 
sarcoplasmic reticulum calcium-ATPase; PLN: phospholamban;  
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endothelial phenotype, and thus decreased the overload imposed by the vascular 

remodeling of the lungs. Indeed, increased endothelial progenitor cells induced by 

exercise training were associated with enhanced endothelial regenerative capacity 

(144, 149, 218), and inhibition of the formation of neointima after carotid artery 

injury (144). 
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5. MAIN CONCLUSIONS 
 
 

Considering the overall findings supported by our studies, the main conclusions 

that derive from them and that we would like to highlight are: 

 

1. Exercise training improved cardiac tolerance to sustained acute pressure 

overload and prevented from cardiac dysfunction observed in sedentary 

animals. 

2. The improved hemodynamic response of exercised animals was associated 

with less ultra-structural damage of the cardiomyocytes, lower expression 

of NF-kB and active form of caspase-3 and decreased oxidative damage to 

cardiac proteins.  

3. Mitochondria were found to be an early and preferential target of oxidative 

damage induced by acute pressure overload, with aconitate hydratase and 

ATP synthase alpha subunit identified as the proteins more susceptible to 

carbonilation and ATP synthase beta as the more prone to nitration.  

4. Tolerance to acute pressure overload reflected by improved functional, 

structural and molecular integrity may be related with the exercise-induced 

adaptive phenotype. 

5. Chronic intermittent cardiac overload induced by beta-adrenergic 

stimulation induced a cardiac phenotype that resembled several features 

the one induced by exercise training, namely similar MHC isoforms 

composition, Akt/mTOR activation, increased SERCA2a expression and 

mitochondrial activity. Like in exercise training, cardiomyocyte 

hypertrophy was not accompanied by fibrosis or osteopontin-1 and 

calcineurin up-regulation. 
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6. Similarly to exercise training, chronic intermittent cardiac overload 

induced by beta-adrenergic stimulation increased the cardiac tolerance to 

an acute sustained pressure overload, preventing cardiac dysfunction. 

7. Besides the nature, the duration and the magnitude of the stimuli may be 

determinant for the development of an adaptive or maladaptive cardiac 

phenotype. 

8. Exercise preconditioning, as well as exercise performed during or after the 

establishment of RV chronic pressure overload secondary to MCT-induced 

PAH averts RV dysfunction and improves survival. Exercise training 

seems to provide a cardioprotective phenotype that allows the RV to work 

under overloading conditions with better tolerance. 

9. The cardioprotective effects of exercise training seem to persist for several 

weeks after exercise cessation. 

10. Exercise can act as an upstream modulator of several pathways activated 

in the RV during PAH. The benefits of exercise training may be associated 

with the prevention of calcium handling disturbances, alpha to beta-MHC 

shift, decreased neurohumoral activation, collagen deposition and 

inflammation and preserved oxidative phosphorylation through the 

reduction of mitochondrial oxidative damage. 
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