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RESUMO

A sobrecarga cardiaca tem um efeito determinante na modulacdo do fendtipo
cardiaco. Em resposta a um aumento sustentado da carga, o coragdao desenvolve um
conjunto de adaptacdes inicialmente compensatdrias que visam normalizar a tensdo
imposta sobre a parede ventricular e garantir a perfusdo de 6rgaos vitais. No entanto,
se a tensdo persistir de forma sustentada, podera ocorrer uma resposta
descompensatéria, que poderd levar ao desenvolvimento de insuficiéncia cardiaca.
Por sua vez, a sobrecarga cardiaca intermitente imposta pelo exercicio fisico induz um
conjunto de adaptacdoes compensatdrias que parecem conferir protecdo contra
indmeros estimulos deletérios. Neste sentido, o principal objetivo do presente trabalho
foi verificar se o exercicio fisico cronico seria capaz de aumentar a tolerancia cardiaca
a sobrecarga de pressdo aguda (estudos I e II) e crénica (estudo III). Adicionalmente,
pretendeu-se averiguar se a aplicacdo de um estimulo de natureza diferente a do
exercicio fisico (estimulacdo com dobutamina), mas capaz de mimetizar algumas das
suas caracteristicas hemodindmicas, nomeadamente a duracdo e magnitude da
sobrecarga, poderia resultar igualmente num fenétipo cardioprotetor (estudo II). Os
estudos I e II incidiram sobre o ventriculo esquerdo (VE) enquanto que o estudo III se
debrugou sobre o ventriculo direito (VD). Os resultados destes estudos indicam que o
exercicio fisico cronico previne a disfun¢do cardiaca induzida pela sobrecarga aguda
de pressdo, acompanhada por uma reducdo da lesdo ultra-estrutural, da expressao da
forma ativa da caspase-3 e do Nf-KB, bem como de menores niveis de dano
oxidativo. A sobrecarga cronica intermitente induzida pela estimulacdo beta-
adrenérgica com dobutamina também protegeu o VE contra a sobrecarga aguda de
pressdo e mimetizou em varios aspectos o fenétipo protetor induzido pelo exercicio

fisico. Relativamente a sobrecarga crénica continua, os dados obtidos sugerem que o
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precondicionamento com exercicio fisico, assim como o exercicio realizado durante
ou apds o estabelecimento da sobrecarga cronica de pressdo sobre o VD, previne a
disfuncdo cardiaca e aumenta a sobrevida. Esta melhoria parece estar associada a
normalizacdo de alteragdes na cinética do célcio e da transicdo da expressdo da
isoforma das cadeias pesadas de miosina alfa para beta, redu¢do da ativacdo
neurohumoral, deposi¢dao de colagénio e inflamacdo, preservacdo da funcionalidade
mitocondrial e diminui¢do do dano oxidativo. Como conclusdo geral, os resultados do
presente estudo sugerem que o exercicio fisico crénico aumenta a tolerancia a
sobrecarga aguda e crénica de pressao, previne a disfungdo e diminui a probabilidade

de desenvolvimento de insuficiéncia cardiaca.

Palavras Chave: exercicio fisico crénico; mecanismos de cardioproteccao;

sobrecarga de pressdo aguda e crdnica; tolerancia cardiaca.
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ABSTRACT

Cardiac overload is considered an important modulator of the cardiac phenotype. In
response to sustained cardiac overload, the heart develops a series of compensatory
adaptations in order to normalize wall stress and guarantee the perfusion of vital
organs. However, this seems to be only a short-term solution once if the stress is
sustained, a decompensatory response occurs and HF will develop. In contrast, the
intermittent cardiac overload induced by exercise results in several compensatory
adaptations that translate into an improved cardiac phenotype that provides cardiac
protection against several cardiac insults. In this sense, the main purpose of the
present work was to address whether exercise training could enhance the ability of the
heart to support acute (studies I and II) and chronic (study III) pressure overload and
thus, prevent cardiac dysfunction and failure. Additionally, we evaluated if a stimulus,
other than exercise (dobutamine stimulation), but mimicking the duration and
magnitude of the exercise-induced cardiac overload, could similarly induce a
cardioprotective phenotype (study II). In studies 1 and II the focus was on the left
ventricle (LV) while in study III it was on the right ventricle (RV). Our results show
that exercise training may prevent cardiac dysfunction induced by acute pressure
overload, an observation that was paralleled by reduced ultra-structural damage,
decreased expression of the active form of caspase-3 and NF-kB, and lower levels of
oxidative damage. Chronic intermittent overload by beta-adrenergic stimulation with
dobutamine also protected against acute pressure overload induced injury, and
mimicked several aspects of the cardioprotective phenotype induced by exercise
training. Regarding chronic pressure overload, our findings indicate that exercise
preconditioning, as well as exercise performed during or after the establishment of

RV chronic pressure overload prevents dysfunction and enhances survival. This
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improved outcome was associated with normalization of calcium handling
disturbances, alpha to beta-MHC expression shift, decreased neurohumoral activation,
collagen deposition and inflammation, and preserved mitochondrial function and
oxidative damage. The overall conclusion of our work is that exercise training
increases the tolerance to both acute and chronic pressure overload, and may prevent

from cardiac dysfunction and failure.

Key Words: Exercise training; mechanisms of cardioprotection; acute and chronic

pressure overload; cardiac tolerance
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1. Introduction
1.1. Modulation of cardiac phenotype by load

The heart has a remarkable adaptive ability, allowing it to continuously adjust
its function to different challenges imposed by diverse stimuli throughout the life span
(95, 207, 241). In order to respond to these continuous challenges the heart can
reversibly adapt its function by activating intracellular signaling cascades, mainly
anchored in the beta-adrenergic system (242). Under prolonged demands, its ability to
maintain cardiac function within a physiological/homeostatic range is limited by
restricted boundaries, which when surpassed will result in a maladaptive phenotype.
This can be illustrated by the chronic (but transient) elevation of workload imposed to
the heart by exercise training or by the chronic (but sustained) overload imposed by a
disease state (e.g. pulmonary or systemic hypertension, valve dysfunction). In both
circumstances, the heart will develop hypertrophy, a compensatory adaptation thought
to provide mechanical advantages as it normalizes wall stress and decreases oxygen
consumption, but ultimately divergent fates will occur (73, 241). In fact, participation
in regular exercise is related with the development of mild to moderate left ventricular
hypertrophy accompanied by enhanced cardiac performance (18, 34, 169, 189, 215).
Importantly, no signs of deterioration in cardiac function or occurrence of
cardiovascular symptoms or events, were detected even after long periods of time (up
to 17 years) of uninterrupted and intense training (206), though this is currently a
topic of debate. On its turn, hypertrophy developed in response to an overloading
disease setting is commonly recognized as a major independent risk factor for
morbidity and mortality (153, 174) and strong data collectively provide evidence that
modulating the hypertrophic growth of the heart ameliorates both left and right

ventricular dysfunction (20, 52, 59, 73, 196, 272). Indeed, if the inciting stimulus is



not relieved, the initially compensatory hypertrophy progresses to heart failure (HF)
through a series of molecular, cellular, and interstitial changes that remain poorly
understood (60, 73, 172, 184, 241). The recognition of a continuous progression from
compensated hypertrophy toward HF substantiates the interpretation of cardiac

hypertrophy as an early therapeutic target (52, 73, 207).

1.1.1. The duration and intensity of the stimuli as possible determinants
of the divergent phenotypes

The reason why certain stimuli promote an adaptive cardiac phenotype while
others originate a maladaptive one remains unknown. For a long time, it has been
considered that the duration of the overload was determinant, since physiological
overloads such as exercise are intermittent, while pathological overloads such as
hypertension are sustained (207). In order to address whether the maladaptive
phenotype is determined by the nature of the stress rather than its duration, Perrino
and collaborators (207) developed a mouse model of intermittent transverse aortic
constriction (ITAC) that allowed to deliver pressure overload, transiently and
reversibly. iITAC was induced for 90 minutes, two times per day, which was the
duration and frequency of the swimming protocol that was used to induce adaptive
remodeling. Comparison of the resultant phenotypes revealed mild hypertrophy with
preserved systolic function and fetal gene expression in the iTAC group that
resembled the exercised group. Nevertheless, iITAC also developed diastolic and beta-
adrenergic dysfunction, cardiomyocyte apoptosis and vascular rarefaction (207). It
was therefore proposed that it is the nature of the stimuli (physiological vs.
pathological), and not its duration, the responsible for triggering maladaptation.

However, the magnitude of the overload was not controlled in that experiment and



thus, the observed disturbances may fairly be a consequence of the cumulative
damage induced by the severity of each episode of overload. Remarkably, it seems
that exercise is not always favorable and may indeed be harmful if performed above
certain limits. Recent human data suggest that the right ventricle (RV), but apparently
not the left ventricle (LV) (206), may develop ventricular dysfunction, fibrosis and
arrhythmias as a consequence of extreme exercise regimens (13, 42, 61, 141, 186,
192, 261, 263). These effects may be the result of cumulative and consecutive
prolonged bouts of exercise. Indeed, some studies show that extreme exercise such as
marathon or ultra-marathon running is associated with transient RV dilation and
dysfunction, as well as with the release of several biochemical markers of cardiac
injury such as brain natriuretic peptide (BNP) and cardiac troponin T (186, 192, 201).
The decline in cardiac function in response to prolonged acute intense exercise (150
minutes at 80% of maximal oxygen consumption) has also been associated with
decreased beta-adrenergic sensitivity in trained individuals (10). It is interesting to
note that these alterations were reported in endurance athletes, who are the more
susceptible athletes to the development of overtraining, a syndrome that results from
an imbalance between excessively great volumes of training without sufficient rest
and recovery between each exercise session, ultimately affecting athletic performance
(166). Additionally, increased apoptotic markers, metalloproteinase (MMP)-9 activity
and mitochondrial DNA damage were reported in the LV of rats after running a bout
of exercise until exhaustion (treadmill running with 10% grade at a speed of
30m/min) (107). The subsequent repetition of bouts inducing such alterations may
induce cumulative damage. For instance, it was shown that rats submitted to
sustained intensive exercise training (16 weeks, 5 days/week, 60 min/day, 36 m/min)

developed features of maladaptive remodeling in the RV such as cardiac fibrosis (and



elevated pro-fibrotic mediators), cardiac dysfunction and increased susceptibility to
arrhythmia (13). Of note, these changes were reversed after cessation of exercise
training. In another report, rats were submitted to 6 weeks of prolonged (stepwise
increased, reaching a maximum of 2h20min per day in the 4" week) and intense
exercise (35 m/min) (119). At the end, animals presented reduced exercise capacity
and evidences of degeneration of the cardiomyocyte structure, such as myofilaments
degradation, cellular swelling, appearance of peroxisomes, and decreased rate of
oxidative phosphorylation (119). Whether these changes affected cardiac function is
unknown since no hemodynamic data was presented. Also, strenuous exercise
(90min/day at 26.8 m/min on a 15% slope treadmill, 5days/week, for 7 weeks) has
been shown to induce cardiomyocyte growth with little or no growth adaptation of the
capillary vasculature, as well as an increase in the average maximum distance from
the capillary wall to the mitochondria of cardiomyocytes, possibly compromising
oxygen delivery and diffusion (4, 5). In face of these evidences, its seems reasonable
to speculate that the exercise benefits may be “dose-dependent”, with elevated
“doses” of endurance exercise eventually leading to deleterious cardiac adaptations in
the long term (77). These observations claim for confirmation with more studies in
order to verify whether “too much of a good thing” is actually bad/deleterious (140).
In the meantime, the amount and intensity of exercise to reach such potential
“overdose” level is far from representing a threat for the great majority of the
population since they do not even meet the minimal amount of exercise recommended
by the guidelines (77). Altogether, these data suggest that cardiac adaptive or
maladaptive phenotype can be a consequence of the severity and/or duration of the
stimuli together with an improper recovery between exercise bouts. When the

imposed stress is too severe or prolonged, the cells might not be able to recover
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Figure 1- Progression from normal to adaptive and maladaptive remodeling. In response to an
elevated workload, a series of compensatory adaptations are triggered in order to preserve myocardial
structural and functional integrity. If the workload is sustained (e.g. induced by strenuous exercise or
cardiac diseases) the initially balanced and adapted phenotype progressively develops structural and
functional disturbances that lead to cardiac maladaptation and dysfunction.

homeostasis, their integrity can be compromised and cellular death pathways might be
favored, progressively contributing to maladaptation (40, 75, 137, 138, 171). Even the
regenerative capacity recently recognized to the heart may be impaired in this
situation, with cardiomyocyte death exceeding renewal, further compromising cardiac
recovery (152, 170, 252). On its turn, if there is a perfect match between the stress
demands and the cellular ability to cope with it, pro-survival pathways are
preferentially activated and an improved homeostatic capacity (increased tolerance)

can be attained (40). Thus, the cell’s lack of an appropriate recovery period, together

with a progressive or sustained elevated functional demand, may be the main reason



why stimuli like hypertension or aortic stenosis (and also prolonged exercise) lead to
cardiac dysfunction, whereas intermittent cardiac overloads during repeated shorter
bouts of mild, moderate and intense exercise (and perhaps the early phases of
increased pressure and volume overload) promote an adaptive phenotype. These ideas

are illustrated in Figure 1.

1.1.2. Mechanisms underlying cardiac adaptive and maladaptive
remodeling

Great efforts have been made to identify the basic mechanisms that

differentiate adaptive from maladaptive remodeling in order to promote the former

and avoid/modulate the latter. Cardiac remodeling is thought to encompass

modifications at the level of cardiomyocyte, vascularity and extracellular matrix

components of the myocardium (85, 115).

1.1.2.1. Cardiomyocyte

The normal adult myocardium is composed of billions of cardiomyocytes
which are characterized by structural and functional heterogeneity that becomes more
obvious when the heart is challenged by demanding situations (170, 194, 204, 223). In
response to the same amount of stimuli, some cardiomyocytes may experience
significant homeostatic disruption and damage with subsequent elimination by
cellular death processes when tolerance limits are exceeded [reviewed by references
(53,75,259)]. Until a certain point, the heart compensates this loss with the formation
of new cardiomyocytes (11, 62, 121, 122). The surviving cardiomyocytes may present
an enhanced function, at least temporally, through a series of intrinsic compensatory

adaptations.



1.1.2.1.1. Growth pathways

The growth of cardiomyocytes is characterized by the activation of complex
signaling pathways, some of which have been identified and associated to the
development of an adaptive or maladaptive phenotype [reviewed by references (16,
57,74, 104)]. Activation of the insulin-like growth factor (IGF)-1/phosphoinositide 3-
kinase (PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin (mTOR)
signaling pathway is considered a hallmark of adaptive growth of cardiomyocytes,
typical from normal postnatal development or exercise training (16, 57, 129, 195).
Growth factors such as IGF-1 and insulin bind to their membrane-bound tyrosine
kinase = receptors, activating PI3K  (pl10alpha), which  phosphorylates
phosphatidylinositol bisphosphate to create phosphatidylinositol triphosphate (57,

127, 262). Phosphatidylinositol triphosphate activates Akt through its recruitment to

308 473

the cell membrane and its phosphorylation at Thr™" and Ser™” by phosphoinositide-
dependent kinase-1 (PDK1) and mammalian target of rapamycin complex 2
(mTORC?2), respectively (36, 57). Akt then stimulates protein synthesis by activating
mTOR and inhibiting glycogen synthase kinase (GSK) (36, 57). Activation or
restoration of this pathway has been associated with enhanced contractile function and
improved calcium kinetic (35, 76, 129, 176), enhanced angiogenesis, glucose uptake,
proliferation and anti-apoptotic effect (17, 22, 36) and expression of genes such as
GATAA4, cardiac troponin I, and alpha-myosin heavy chain (22). Apparently, these
benefits are only present when this pathway is transiently activated since long-term
activation of IGF-1 or Akt lead to extensive cardiac hypertrophy, increased
expression of atrial natriuretic peptide (ANP) and beta-myosin heavy chain,

interstitial fibrosis and cardiac dysfunction (36, 50, 226).

On its turn, the binding of hormones/vasoactive factors such as angiotensin (Ang)



IT, endothelin- (ET) 1 and catecholamines to their receptors on the cardiomyocytes [G
protein-coupled receptors (GPCR)], and sustained activation of the downstream
intracellular signaling pathways, has been classically linked with maladaptive growth
[reviewed by references (16, 57,74, 104)]. Interestingly, exercise transiently increases
cardiac expression of ET-1 (111) and circulating levels of catecholamines (84) but
this does not result in maladaptation, further suggesting that sustained (but not
intermittent) exposure may be a key factor. Of these pathways, the calcium-—
calmodulin—dependent phosphatase calcineurin has been identified as a potent
hypertrophic promoter as it seems to be sufficient, and in many cases necessary, to
induce maladaptive growth and dysfunction (180). Data from human studies also
support the involvement of calcineurin in the development of HF (155, 219).
Calcineurin is triggered by the sustained elevation of intracellular calcium, for
instance resultant from inositol triphosphate-mediated calcium release or from
sarcoplasmic reticulum calcium-ATPase (SERCA2a) failure (57, 229, 262). Once
activated, calcineurin dephosphorylates the nuclear factor of activated T cells
(NFAT). NFAT is normally hyperphosphorylated and sequestered in the cytoplasm,
but is rapidly translocated to the nucleus after calcineurin-mediated
dephosphorylation (16, 95, 127). In the nucleus, it is thought to trigger the expression
of pro-hypertrophic genes usually associated with maladaptive remodeling. Genes
specifically regulated by NFAT in cardiomyocytes are still under investigation (41)
but NFAT3c, one of the five NFAT isoforms, was recently shown to directly increase
the expression of the miR-23a, a pro-hypertrophic microRNA (156). This microRNA
favors cardiomyocyte growth by suppressing the translation of the muscle specific
ring finger protein 1 (MuRF1), which is an anti-hypertrophic factor (156). NFAT can

also increase gene expression of ET-1 and BNP by interacting with other transcription



factors such as GATA4 (37, 183). Contrasting to pathological settings of HF, the
calcineurin/NFAT pathway is not activated in response to growth hormone (GH)-
IGF-1 or exercise training-induced cardiac remodeling (262). Moreover, its inhibition
was shown to be paralleled with improved cardiac function, supporting its
involvement in maladaptation (127, 197).

The reason why certain pathways seem to be preferentially activated in opposition
to others in response to a stimulus remains intriguing. One possible explanation may
be related with the magnitude of the overloading stimuli and to its impact on the
overall population of cardiomyocytes, independently of the overloading cause.
Cardiomyocytes are heterogeneous (194, 223), have distinct injury thresholds and
thus their response may be conditioned by their ability to tolerate the overload,
independently of the cause. Those cardiomyocytes who experience the greater
homeostatic imbalances, lesions and damage to proteins, DNA, and membranes will
probably die or exhibit greater and/or prolonged activation of certain signaling
mediators in comparison to those with greater tolerance. For instance, those
cardiomyocytes experiencing greater calcium kinetic deregulation (e.g. due to
oxidative damage or energetic failure) will exhibit marked activation of calcium-
induced calcineurin pathway (180). If significant amounts of cardiomyocytes are lost
for example by necrosis, the surrounding cardiomyocytes and extracellular matrix will
be more susceptible to the influences of inflammatory cytokines (102, 111). If the
overloading stimulus results in prolonged activation of the sympathetic system, the
sustained elevated levels of circulating catecholamines may favor the chronic
activation of the cardiac beta-1-adrenergic receptors, and consequently, apoptosis (84,
165). Therefore, the signaling pathways that are detected to be more up-regulated in a

certain biochemical assay may not be stimuli-specific per se, but rather a reflection of



the severity of the stimuli and of the different susceptibility of the overall
cardiomyocyte population to the stimuli. Such understanding has been difficult by the
fact that the great majority of studies use homogenates of the entire, or parts, of the
cardiac muscle, which does not allow the subtlest changes to be detected. Moreover,
this methodological approach compromises the understanding of important aspects
such as the origin of the transcripts or proteins (relative contribution from
cardiomyocytes and non-cardiomyocytes), how many cardiomyocytes participate in
the response to stress (generalized response or specific to certain regions of the heart),
what type of cardiomyocytes express a certain transcript (e.g. young and/or old,
mononucleated and/or multinucleated, more or less damaged cardiomyocytes), or

even if the same cardiomyocyte co-express multiple genes at the same time.

1.1.2.1.2. Myosin heavy chain isoforms

The ability of the heart to eject blood is highly dependent on myocardial
shortening velocity, a propriety largely determined by its myosin heavy chain (MHC)
isoforms composition (88). Two distinct isoforms, alpha and beta, are expressed in the
mammalian heart. The rodent adult heart expresses predominantly alpha-MHC
(>90%), whilst humans express mainly beta-MHC (>95%) (164, 178). While alpha-
MHC is associated with a higher adenosine triphosphatase (ATPase) activity and
enhanced shortening velocity, beta-MHC is slower but capable to generate the same
cross-bridge force at a lower energetic cost (135, 178, 191). Developmental stage,
thyroid status and exercise training or chronic work overload induced by disease
settings, all alter MHC composition. For example, exercise training generally induces
an up-regulation of alpha-MHC in rats (118, 214), though increased beta-MHC has

also been reported without any compromise to cardiac function (109). On its turn,
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data from human and animals studies suggest that cardiac hypertrophy induced by
pathological settings such as long-term hypertension or myocardial infarction is
accompanied by increased expression of the slower MHC isoform (88, 97, 110, 118,
164, 178, 190, 191). Recently, it was shown that only a minority of cardiomyocytes,
located in specific regions such as in the base of the LV and tips of the papillary
muscle from mice, express beta-MHC in response to chronic pressure overload (162).
Interestingly, these cardiomyocytes were smaller than those not expressing the beta
isoform, challenging the current view of beta-MHC as a marker of maladaptive
cardiomyocyte hypertrophy (162).

It has been proposed that a shift from alpha- to beta-MHC might be an adaptive
response as this isoform is energetically more efficient and thus preserves energy (97,
106). However, overexpression of beta-MHC in transgenic mice failed to prevent
cardiac dysfunction under chronic isoproterenol challenge or in a post-infarction
failure model (134). Remarkably, these mice tolerated exercise training without any
sign of maladaptation (134). On its turn, transgenic rabbits expressing alpha-MHC
were protected from tachycardia-induced cardiomyopathy (114) but not from
myocardial infarction or LV pressure overload-induced HF (113). While the impact
on cardiac function of MHC isoforms manipulation remains poorly understood,
improvement of cardiac function has been constantly associated with a coordinate
increase in alpha- and a decrease in beta-MHC in the rat heart (96, 110, 134).
Therefore, it remains to be demonstrated if the change in MHC isoform is a cause or a
consequence of HF, or if it merely results from the commitment of newly formed
cardiomyocytes (152) and is only transitorily maintained while the new
cardiomyocyte matures. This interpretation is reasonably sustained by the fact that: 1)

beta-MHC is increased in maladaptive remodeling (88, 97, 110, 118, 164, 178, 190,
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191), ii) differentiation of cardiac stem cells (CSC) into cardiomyocytes is also
increased (3, 11, 121, 122, 152, 170, 252), iii) smaller cardiomyocytes, and apparently
not larger, express beta-MHC (162) and iv) smaller cardiomyocytes are though to be

younger than larger cardiomyocytes (223).

1.1.2.1.3. Excitation-contraction coupling disturbances

Calcium homeostasis has a major role in the process of contraction and
relaxation (excitation-contraction coupling). Depolarization of the cardiomyocyte
membrane leads to entrance of calcium to the cytosol through the opening of L-type
calcium channels (LTCC), triggering further calcium release from the SR via
ryanodine receptor (RyR). Intracellular calcium then binds to troponin C in the
myofilaments and initiates contraction (19, 126, 264). Subsequent relaxation is
dependent of calcium detachment from troponin C, which is recaptured into the SR by
SERCAZ2a or extruded from the cell by the sarcolemmal sodium/calcium exchanger
(NCX). Exercise training results in improved cardiac function, which has been
associated with enhanced calcium handling. Exercise was shown to increase the
expression and activity of SERCAZ2a, but not total phospholamban (PLN) (128, 264).
This up-regulates the SERCA2a/PLN ratio and therefore allows SERCA?2a to increase
the rate of calcium uptake. Increased phosphorylation status of PLN at Thr'” residue
mediated by exercise-induced activation of calcium calmodulin-dependent protein
kinase (CaMK) II and by Akt was shown to contribute to increase SERCA activity
(64, 130). Akt also seems to regulate LTCC stability, thus influencing cardiomyocyte
calcium entry, handling and contractility (64). Moreover, exercise seems to increase
inotropism by increasing myofilament responsiveness to calcium (265). In contrast,

important disturbances were detected in cardiomyocytes from failing hearts (78, 126,
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177, 187, 229). HF has been associated with a sustained increase in intracellular
calcium concentration, thus interfering with normal excitation-contraction coupling
and relaxation (19, 126). Accumulation of calcium in the cytosol has been implicated
in cardiac dysfunction by impairing mitochondrial activity (238), promoting cellular
death and proteolysis (71, 72), and by triggering maladaptive hypertrophic pathways
(16,127,176, 180). Reduced SERCA2a expression and activity has been pointed as a
major cause of this calcium homeostatic disruption (29, 72, 177, 220, 229), and
consequently in the pathogenesis of the contractile defects observed in HF (78, 126).
Of note, its manipulation was shown to improve cardiac function (78, 126, 128, 158,
177, 187, 229) and gene transfer of SERCAZ2a is currently being tested in clinical
trials (90).
1.1.2.14. Energy and metabolism

In order to maintain proper functioning, the heart needs to have a constant and
efficient energetic resource (108, 112). In the healthy heart, oxidative phosphorylation
is capable to maintain normal concentrations of ATP, and guarantee adequate supply
even when its work output increases 3-to 5 fold in comparison to basal conditions
(112). Fatty acid oxidation is the major source of energy, accounting for 60-90% of
ATP production, with the remaining 40-10% coming from glucose oxidation (193).
Cardiac remodeling induced by exercise training is associated by optimized fatty acid
and glucose oxidation machinery (30, 89, 120, 240), enhanced mitochondrial
respiration and ATP production (195). In opposition, the failing heart is recognized as
an energy-starved engine running out of fuel (193). As HF progresses to the more
advanced stages, there is a gradual decline in the activity of mitochondrial respiratory
pathways, compromising ATP production (160, 230). Alterations in the substrate

utilization, oxidative phosphorylation and high-energy phosphate metabolism, have
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all been pointed as possible causes of ATP deficiency (28, 116, 193, 230, 237, 255).
These changes seem to be explained, at least partially, by mitochondrial structural
abnormalities and reduced activity of electron transport chain complexes (28, 33, 80,
108, 250), which can be impaired for instance by oxidative and nitrative damage (159,
188, 202). The consequent lack of energy dramatically compromises cellular
functions such as ion transport (e.g. sodium/potassium pump activity), sarcomeric
function and intracellular calcium homeostasis (e.g. SERCAZ2a functioning), therefore

contributing to cardiac dysfunction and HF.

1.1.2.1.5. Death and renewal

It is widely accepted that the heart is a postmitotic organ, without the capacity
to regenerate (6, 62, 143). Additionally, cardiomyocyte death has been considered a
relatively rare event in the healthy normal (55, 84, 167) or exercised myocardium
(118, 132, 234), but to be exacerbated in both human and animal settings of HF, thus
contributing to the progression of the disease (87, 181, 198, 258). In failing human
heart, apoptosis was estimated to account for an annual rate of cardiomyocyte loss of
2-4% while necrosis contributes with 11% and autophagy also with 11% (170).
Accordingly, in the absence of cardiac disease, the heart was supposed to have a
constant number of cardiomyocytes throughout the life, with the same age of the
individual. In line with these assumptions, any increase in cardiac mass in response to
workload was attributed mainly to cardiomyocyte hypertrophy and any loss of
cardiomyocytes was considered irremediable, but partially compensated by the
hypertrophy of the surviving cardiomyocytes (6, 62). However, there is now strong
evidence to support a more dynamic view of the heart, where cardiomyocyte growth,

death and renewal co-exist and contribute to the normal homeostasis of the heart (15,
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62, 121, 122). Indeed, it seems that cardiac cellular losses are not so rare as initially
thought. Evidence shows that it occurs continuously during the life span as a
consequence of the normal wear and tear, increase as we age and is more significant
in man than in women (15, 87, 121, 122). It has been estimated that approximately
3x10° cardiomyocytes per day are eliminated in the healthy adult human heart,
increasing to 179x10° and 97x10° in the acute and chronic infarcted heart,
respectively (6, 87, 198). Estimates have not been conducted in the exercised heart
but some evidence also suggests that cardiac cell death may be increased, at least in
response to acute prolonged exercise. For instance, increased pro-apoptotic markers
have been reported in the heart from rats submitted to a bout of exercise until
exhaustion (107). Also, increased circulating levels of cardiac troponin T (186, 192,
249), structural abnormalities such as myofibrillar disruption (119) and abnormalities
of the cardiac interstitium characterized by accumulation of collagen (13, 42, 261,
263) have been detected after strenuous exercise, suggesting that cardiomyocyte death
occurred. Theoretically, the rate of cardiomyocyte loss would be a little higher to that
presented by the normal sedentary heart since, comparatively, each bout of exercise
imposes a greater demand to each cardiomyocyte. Overall, these observations
provided some support to the concept of ongoing cardiomyocyte degeneration and
loss, which is progressively more evident as the duration and/or severity of the
cardiac workload increases.

Such rates of cellular death imply that in few years the heart would completely
disappear. However, it seems that the heart contains a population of CSC that are able
to differentiate into new cardiomyocytes, as well as into endothelial and smooth
muscle cells (11, 62, 121, 122). This allows the heart to compensate the loss of

cardiomyocytes and thus, to some extent, maintain cardiac structural and functional
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integrity. The magnitude of CSC activation and differentiation into new
cardiomyocytes seems to be related with the level of the cardiac workload (6, 248).
Indeed, activation of a large proportion of CSC and addition of new cardiomyocytes
(hyperplasia) have been reported under cardiac-demanding conditions such as acute
and chronic cardiac infarction (3, 12, 121, 224, 252), chronic pressure overload (251),
and exercise training (63, 132, 157, 257). Excepting to exercise training, this response
fails to normalize the workload or to correct the structural and functional
abnormalities of the infarcted or chronically pressure overloaded heart, which
ultimately progresses to HF (152). Possible explanations include loss of CSC of the
damaged area by apoptosis/necrosis and the difficulty of CSC from spared areas to
migrate into the scar (152). A few authors also argue that some cardiomyocytes retain
the ability, though limited, to reenter the cell cycle and suffer mitotic division (12, 17,
22,136, 143, 223). This property seems to be specific from approximately half of the
mononucleated cardiomyocytes which were demonstrated to be the only to complete
cytokinesis (17). Of note, exercise training, but not chronic pressure overload,
induced an increase in cardiomyocyte proliferation in the rat heart (22). Altogether,
these data suggest that cardiomyocyte death, together with regeneration, plays a
determinant role in the homeostasis of the heart and challenges the dogma that the
adult heart is a postmitotic organ, without renewal capacity. Besides cellular
hypertrophy, hyperplasia may also underlie the cardioprotective phenotype induced
by exercise training. Contrarily to cardiac overloading diseases (and probably
strenuous exercise), the workload imposed by moderate exercise training is constantly
and fully compensated by the differentiation of CSC and proliferation of

cardiomyocytes.
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1.1.3. Extracellular Matrix (ECM) Remodeling

The matrix support of the heart is predominantly collagen with relatively small
amounts of fibronectin, laminin and elastin (115). Under normal conditions or in a
setting of physiological growth, a fine network of collagen fibers provides structural
integrity and helps to maintain normal cardiac performance (9, 123, 172). An
exception has been recently provided, with data showing that strenuous and prolonged
exercise training can increase the fibrotic levels in the RV of rats (13). A few human
data also support the idea that elevated volumes of training are associated with the
development of fibrosis but need confirmation from longitudinal studies (42, 261,
263). In pathological settings (45, 54, 67, 207, 210, 254), regardless the etiology,
fibrillar collagen (fibrosis) can accumulate as reactive (e.g., an adverse accumulation
collagen) or as reparative fibrosis (i.e., scar tissue) that replaces the cardiomyocytes
that are lost by necrosis (26, 232). Apoptosis does not lead to fibrosis since it is
devoid of inflammatory reaction (232). Accumulation of fibrosis adversely affects
compliance (increase stiffness), electrical activity (facilitates arrhythmogenesis) and
oxygen diffusion (promotes an ischemic environment), increasing the susceptibility
for HF development (16, 54, 95, 115, 182, 254). Collagen is synthesized by
myofibroblasts, which are thought to result from differentiation of resident fibroblasts
or recruitment of microvascular pericytes, endothelial cells and bone marrow-derived
circulating progenitor cells (133, 273). TGF-beta is considered the most important
activator of myofibroblasts (146) but neurohumoral factors (e.g. ET-1, Ang II and
aldosterone), as well as inflammatory mediators [e.g. interleukin-6 (IL-6), tumor
necrosis factor (TNF)-alpha] are also involved (85). Of note, osteopontin (OPN), a
matricellular protein and cytokine (266), was shown to be determinant in the

reorganization of the ECM during cardiac remodeling as it modulates both TGF-beta-
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and Ang II-mediated fibrotic response (43, 148, 256). Moreover, OPN favors collagen
accumulation by restraining metalloproteinases (MMP) through inhibition of IL-1beta
(267). MMP are collagenases responsible for collagen degradation, whose activity is
repressed by endogenous tissue inhibitors (TIMP). The interaction and balance of
MMP and TIMP determines the maintenance of ECM homeostasis (236). The pro-
inflammatory status of HF patients (increased IL-6, TNF-alpha and IL-1beta) favors
MMP activation (85). Increased MMP activity and decreased levels of TIMP results
in excessive degradation of the ECM and subsequent ventricular dilatation and their
modulation seems to provide important ameliorations of cardiac function (23, 117,
154, 208). Of note, it has been recently proposed that increased activity of MMP-9
and -14 are important mediators of CSC invasion to the fibrotic tissue, potentially to
repopulate the scarred area (224). Current data suggest that resident CSC do not seem
to be able to spontaneously migrate from the viable tissue to fibrotic areas (6) but it
seems that activation of growth factors facilitates the infiltration of the scarred tissue

and generation, to some extent, of cardiomyocytes and coronary vessels (224).

1.1.4. Cardiac vascularity

Several evidences indicate a strong relation between cardiac capillary density,
cardiomyocyte hypertrophy and cardiac function (48, 103, 225, 231, 247). Adequate
perfusion is fundamental for myocardial homeostasis. As the heart remodels in
response to exercise training, concomitant capillary growth is thought to guarantee
that capillary density and perfusion remains normal (145, 260). This adaptation
contrast with what happens in response to sustained or progressive workloads induced
by pathological settings, where a mismatch between cardiac capillaries and the size of

the cardiomyocytes occurs (225). Reduced capillary density has been observed in
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both humans and animal settings with HF (1, 20, 76, 176, 207, 225). Vascular
rarefaction compromises oxygen delivery favoring an hypoxic environment, with
subsequent loss and degeneration of cardiomyocytes, atrophy, and interstitial fibrosis,
contributing to HF progression (32, 81, 102, 231). Angiogenesis, the growth of new
vessels from existing ones, is determinant for normal organ growth and wound
healing. Under physiologic conditions, growth factors such as vascular endothelial
growth factor (VEGF) and Angiopoietin 1 provide a tight control between
angiogenesis and organ growth (19). Late stages of HF are associated with decreased
expression of angiogenic factors, coincident with the progressive loss of capillaries
and cardiac function (1, 32, 59, 176, 205). Treatment with VEGF or Angiopoietin 1
was shown to prevent the loss of capillaries and rescue cardiac function (225, 275).
The use of vascular growth for therapeutic purposes is currently under exploration in

clinical trials (244).

1.2. Exercise training-induced cardiac protection
1.2.1. Brief historical perspective

The notion that exercise training can provide a protective phenotype to the
myocardium seems to be out of any dispute and the recognition of its potentialities as
a non-pharmacological option to prevent cardiovascular diseases (CVD) is not from
these days. We had opportunity to access some papers from the late 1880s, early
1890s and 1900s were it was already possible to find a serious concern regarding to
the use of exercise training with both therapeutic (8, 65, 161, 227, 245) and
preventive purposes (8, 65). From these, we would like to highlight two papers
published in Transactions of the American Climatological Association journal. The

first one is from 1895 and was written by a physician named Robert Babcock (8),
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were the preconditioning effects of exercise against subsequent angina pectoris is

reported:

“Improved arterial circulation is so manifest a result of these exercises that
Dr. Schott has known them to lessen the frequency, nay, even the severity of
attacks of angina pectoris in individuals with arteriosclerosis who had been
unable to indulge in even very moderate physical exercise taken in the
ordinary ways of walking, etc.; permanent amelioration of the sufferer's
condition has been achieved in some of these cases.”
(Babcock, 1895, p304)
The second report is from another physician, Henry Elsner (65), who in 1910 was,

apparently, aware of the beneficial effects of exercise in preserving cardiovascular

health:

“Therefore to the busy brain-worker, whether he has hypertension or not, we
are forced to recommend periods of quiet, prolonged rest, change of scene,

proper exercise, and temperance in all things.”
(Elsner, 1910, p150)

Although these early evidences mainly based on empiric observation, the link
between exercise and health was still looked with much skepticism by the medical
community. It was only in the middle of 20th century that physical exercise started to
be generally recognized as an important way to promote cardiovascular health, and
accepted as an important preventive measure (203). The first steps are attributed to
Professor Jeremy Morris and his associates, who showed for the first time an
association between vigorous exercise and protection against coronary heart disease,
by comparing active conductors with sedentary drivers of the London double-decker
buses. They concluded that vigorous exercise was a natural defense of the body,
providing protection to the ageing heart against ischemia and its deleterious

consequences (185). In the following years, numerous epidemiological studies were
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performed, supporting the reduced incidence of cardiovascular events (91, 168, 173)

and all-cause mortality (173) in individuals engaged in regular physical exercise.

1.2.2. Exercise training and cardiac tolerance to pressure overload

The above-mentioned epidemiological studies suggest that individuals engaged in
regular physical exercise develop a resistant heart to different harmful stimuli (91,
168, 173). As initially reviewed, exercise training induces a series of compensatory
adaptations that translate into improved cardiac function. These adaptations are
believed to allow the heart to respond more efficiently to the daily hemodynamic
demands, without significant disturbances of cellular homeostasis (increased
tolerance). For instance, increased activity of MAPK (ERK, JNK and p38) and gene
expression [c-myc, c-fos, c-jun, ET-1, brain natriuretic peptide (BNP) and IGF-1] was
observed in the heart of sedentary rats after a single bout of exercise (111, 233). When
trained animals performed the same bout of exercise, this effect was lost, indicating
that the heart from these animals was more tolerant to that exercise’s intensity.
Increased tolerance provided by exercise was also observed against more demanding
and injurious insults such as in experimental ischemia-reperfusion (I-R) (25, 38, 71,
105, 109, 150, 270), myocardial infarction (MI) (47, 49, 56, 70) or doxorubicin
cardiotoxicity (7). Of note, cardiac protection to I-R was shown to be promoted by
short (i.e., 1-5 day) and long-term (i.e., weeks to months) exercise training (51, 211),
and seems to extend to both male and female (51, 92, 151), in the young and aged
hearts (239), and, importantly, to be present several days after cessation of exercise
training (150). While the mechanisms underlying such improved response are still
poorly comprehended [reviewed in references (83, 212)], evidence points for elevated

myocardial levels of antioxidants (71, 270), increased expression of sarcolemmal (24,
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38) and, potentially, of mitochondrial (213) ATP-sensitive potassium as important
mediators of exercise-induced cardioprotection against I-R.

The question that follows is if the increased tolerance in the acute phase persist
and translate in subsequent less remodeling of the myocardium in the healing phase.
Remodeling of the left ventricle (LV) after I-R or MI injury is associated with
changes in LV geometry, function, and histologic characteristics that lead to increased
risk of HF (47, 49, 69, 70, 82). Apparently, because prior exercise results in reduced
infarcted area, less workload is imposed to each cardiomyocyte and less activation of
the signaling pathways involved in cardiac remodeling are expected to occur.
Moreover, because cardiomyocytes from exercised hearts are characterized by several
intrinsic beneficial adaptations that improve contractility, they are supposed to
tolerate better the resultant pressure overload, and thus cardiac function should be
improved (58). A few number of studies give support to these ideas by showing that
exercise training prior to permanent coronary artery ligation protected cardiac
function, decreased maladaptive remodeling and improved survival, several weeks
after myocardial infarction induction (47, 49, 69, 70). Improvements were related
with increased arteriolar density, lower ECM remodelling and pro-apoptotic markers,
decreased mRNA expression of ANP and improved energetic status (decreased
aldolase and increased cytochrome c-oxidase and fatty acid binding protein mRNA
expression) (49, 69, 70). Overall, these findings suggest that even when regular
exercise fails to prevent a major cardiovascular event, it can still act to prevent cardiac
dysfunction and improve survival (49). Therefore, it is important to assess if the long-
lasting benefits of prior exercise can indeed be extended to other relevant cardiac
insults, namely to pressure overload conditions. Cardiac diseases such as pulmonary

and systemic hypertension or aortic stenosis impose significant pressure overload to
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the heart. As initially described, the heart has the ability to adapt and develop short-
term compensatory responses, but ultimately maladaptation ensues and HF occurs
(60, 73, 172, 184, 241). Increasing the tolerance of the heart to pressure overload

could eventually prevent or delay cardiac dysfunction and HF.
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2. AIMS

With these concepts in mind, our major purpose in this work was to address if
prior exercise training could increase the tolerance of the heart to both acute and
chronic cardiac pressure overload and to provide some insights about potential
underlying mechanism. We also intended to verify if the cardioprotective phenotype
of exercise training could be mimicked by a stimulus of different nature, designed to
simulate the duration and magnitude of the exercise-induced cardiac overload.

This goal is sustained by the specific aims presented in each paper that resulted

from this entire work, namely:

a) PaperI:
* to test if moderate exercise training increases tolerance to acute
pressure overload stimulus, protecting from cardiac dysfunction;
* to test if exercise training prevents the activation of mechanisms

implicated in cardiac remodeling.

b) Paper II:
* to investigate if the exercise-induced protective cardiac phenotype
could be mimicked by chronic intermittent cardiac overload
(designed to mimic the duration and magnitude of exercise induced
overload) induced by beta-adrenergic stimulation with dobutamine;
* to investigate if the cardiac phenotype induced by chronic
intermittent beta-adrenergic stimulation could mimic the protection
conferred by exercise training against left ventricular acute

pressure overload.
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c) Paper III:

to assess the impact of exercise training performed at different
time points of RV chronic pressure overload secondary to
experimental PAH induced by monocrotaline (MCT) on cardiac
function;

to asses if exercise training could modulate important markers of
cardiac maladaptation, namely calcium handling disturbances,
alpha to beta-MHC shift, neurohumoral activation, collagen
deposition, inflammation, oxidative phosphorylation impairment

and oxidative damage.
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3. RESULTS
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Moderate exercise training provides left ventricular tolerance to acute

pressure overload
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ABSTRACT

Cardiac overload imposed by exercise training promotes a unique cardioprotective
phenotype. In the present study we tested whether chronic intermittent cardiac
overload induced by beta-adrenergic stimulation, designed to mimic the duration and
magnitude of exercise induced overload, could provide similar benefits. Male Wistar
rats were submitted to treadmill running (Ex,n=20), dobutamine (Dob;
2mg/kg,s.c.,n=20) or placebo administration (Cont,n=20) for 5 days/week during 8
weeks. Next, animals were sacrificed for histological and biochemical analysis or
submitted to left ventricular (LV) hemodynamic evaluation in baseline conditions, in
response to isovolumetric contractions and to sustained LV acute pressure overload
(35% increase in peak systolic pressure maintained for 2 hours). Baseline cardiac
function was enhanced in Ex and the response to isovolumetric heartbeats was
improved in both Dob and Ex. Increased tolerance to sustained acute pressure
overload was also observed in Dob and Ex, in contrast to Cont that presented diastolic
dysfunction. Cardiac hypertrophy was present in Dob and Ex without an increase of
collagen and osteopontin-1. Their hypertrophic phenotype was identical as they
exhibited similar MHC isoforms composition, similar increase in phospho Akt/mTOR
and SERCA2a and normal levels of calcineurin. In-gel assessment of oxidative
phosphorylation showed increased activity of mitochondrial complex IV and V in
both Dob and Ex. Chronic submission to intermittent cardiac overload by beta-
adrenergic stimulation provides a cardioprotective phenotype resembling several
features of exercise training. These data suggest that the duration and magnitude of
the stimuli may play a role in the development of an adaptive or maladaptive
phenotype.

Keywords: exercise; intermittent cardiac overload; hypertrophy; cardioprotection
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INTRODUCTION

Cardiac overload represents one of the most important modulators of cardiac
phenotype. Under chronic loading conditions induced by disease states such as
hypertension or aortic stenosis, the heart may develop heart failure. In opposition,
chronic workload elevations elicited by exercise training provide an adaptive
phenotype (5), which confers cardiac protection against subsequent cardiac insults (2,
17, 18, 39) and can even correct cardiac functional, structural and molecular
abnormalities caused by previous pathological overloading states (22, 35, 37).
Moreover, distinct features at the cellular and molecular level have been identified
that differentiate these two phenotypes. Exercise training is associated with cardiac
hypertrophy in the absence of collagen deposition, normal or increased alpha-MHC
isoform, activation of the IGF-1/PI3K/Akt/mTOR pathway and mitochondrial
improvements (5, 24, 27, 37). In opposition, cardiac hypertrophy induced by
pathologic overloading states is accompanied by increased collagen levels, a shift to
the slower beta-MHC isoform, activation of the calcineurin/NFAT pathway and
mitochondrial dysfunction (1, 5, 45).

The reason of such a divergent response remains unknown but the features of
the stimuli, namely its duration and intensity, may be determinant (21, 29, 30). If the
stress is too severe or if it is too prolonged, the cell might not have sufficient time to
recover, its integrity can be compromised and cellular death pathways might be
favored, progressively contributing to maladaptation (10, 34). On its turn, if there is a
perfect match between the stress demands and the cellular response, pro-survival
pathways are activated and an improved homeostatic capacity is attained (10). In this

sense, the protective adaptations induced by exercise training would result from the
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cumulative effects of transient changes in gene transcription induced by each acute
bout of exercise (48, 52). Increased activity of MAPK and enhanced gene expression
of c-myc, c-fos, c-jun, endothelin-1, BNP and IGF-1 were detected after an acute bout
of exercise (25, 26). Moreover, Atf3, Fos, Apoldl and Pxdn gene expression were
also shown to be up-regulated in response to acute exercise (48). Of note, these gene
expression modifications tended to be attenuated after a period of training, suggesting
the acquisition of an improved homeostatic state. In contrast, prolonged overloads of
pathological origin are paralleled with chronic elevations of some of these mediators,
indicating that their sustained up-regulation may underlie the development of a
maladaptive phenotype (5, 15, 20, 25, 40, 45). Thus, the cell’s lack of an appropriate
recovery period, together with a progressive or sustained elevated functional demand,
may be the reason why stimuli like hypertension or aortic stenosis lead to cardiac
dysfunction, whereas intermittent cardiac overloads during repeated bouts of exercise
develops a cardioprotective phenotype. Further substantiating this hypothesis, is the
observation that contrarily to chronic pressure overload, intermittent transverse aortic
constriction (iTAC) was able to induce a mild hypertrophic phenotype with preserved
systolic function and fetal gene expression that resembled the exercised group (45).
iTAC animals also developed diastolic and beta-adrenergic dysfunction,
cardiomyocyte apoptosis and vascular rarefaction (45) but these disturbances may
fairly be attributed to the severity of the overload that was not controlled.
Consequently, the time that mediated between each ITAC application was not
adequate to allow the cellular recovery, and possibly the capacity of the cell to
maintain genomic and macromolecular integrity was progressively lost.

Thus, it is possible that the regular submission to different intermittent and

tolerable amounts of stresses may produce beneficial adaptations similar to exercise.

45



Therefore, we hypothesized that a stimuli of different nature but with comparable
cardiac overloads in terms of magnitude, applied during the same period of time,
would resemble the acute hemodynamic demands induced by exercise training, and
thus, when repeated over time, would result in comparable cardioprotective
phenotype. To test this hypothesis, we submitted rats to exercise training or to similar
chronic controlled intermittent cardiac overload induced by beta-adrenergic
stimulation with dobutamine, and compared their phonotypical adaptations and

tolerance against acute pressure overload.
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MATERIAL AND METHODS

Animal experiments were performed according to the Portuguese law on animal
welfare and conform to the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH Publication No. 85-23,
Revised 1996). The ethical committee of the University of Porto, Portugal approved
all studies.

Preliminary hemodynamic experiments were performed in order to determine the
dose of dobutamine that could reproduce some aspects of our exercise training
protocol. Specifically, we were looking for a dosage that could induce a similar
hemodynamic demand (~40% increase heart rate and ~15% increase in peak systolic
pressure) (36), that could be maintained for the same period (90 minutes), and that
could be applied daily for several weeks (5 days/weeks during 8 weeks). To perform
this first task, male Wistar rats (n=10; age=5-6 weeks, Charles River Laboratories,
Barcelona) were anaesthethysed by inhalation of a mixture of sevoflurane (4%) and
oxygen, intubated for mechanical ventilation (60 cpm, tidal volume set at 1 ml/100g;
Harvard Small Animal Ventilator, Model 683) and placed over a heating pad (body
temperature is maintained at 37°C). One pressure-volume catheter (model-FTM-
1912B-8018, 1.9F, Scisense) was introduced in the left ventricle through the right
carotid artery as previously described in detail (42). After stabilize, dobutamine
(Mayne Pharma, Portugal) was administered subcutaneously (s.c.) and hemodynamic
parameters were recorded every 10 min for at least 100 min. Considering previous
data from literature, different doses of this drug were tested in order to define the
most suitable (8, 9, 12, 33, 51), namely 4, 2 and 1 mg/Kg. Data was stored and
analyzed with PVAN 3.5 software (Millar). The results that best fitted our criteria

were obtained with the administration of 2 mg/Kg of dobutamine. Results from 3
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independent experiments with acute dobutamine were averaged and are shown in
Figure 1. Dobutamine induced an increase of ~15% in peak systolic pressure, ~30%
in HR and ~190% in dP/dtmax (Figure 1-A, B and C, respectively), which resembles

previous published data using the same concentration (9).

Study design

Male Wistar rats (n=60; age=5 weeks; Charles River laboratories, Barcelona) were
housed in groups of 5 rats/ cage, in a controlled environment at a room temperature of
22°C, with inverted 12:12-h light-dark cycle, in order to match animals handling and
training with their most active period. All animals had free access to food and water.
After 1 week of quarantine, they were randomly attributed to one of the following
protocols: 1) treadmill exercise training (Ex; n=20), 2) dobutamine administration
(Dob; n=20) and 3) placebo administration (Cont; n=20). Animals assigned to the Ex
group trained for 8 weeks, 5 days/week. Exercise duration and treadmill speed was
gradually increased over the course of the first 3 weeks of training until animals
achieved 90 min/day at 25 m/min. After that, both intensity and exercise duration
were maintained constant. Animals from Dob group were injected (s.c) with 2 mg/kg
of dobutamine (Mayne Pharma, Portugal) for 8 weeks, once a day, 5 days/week.
Animals from Cont group and Ex group received an equal volume of sodium chloride
(NaCl) 0.9% (s.c.). Dosages were adjusted weekly according to the body weight and

dilutions were performed with 0.9% NaCl.

Hemodynamic evaluation

Twenty-four hours after ending the protocols, half of the animals from each group

were anaesthethysed by inhalation of a mixture of sevoflurane (4%) and oxygen, and
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were euthanized by exsanguination. Tissue samples were collected and prepared for
histological analysis and biochemical studies as will be explained latter. The other
half of the animals was also anaesthethysed by inhalation of a mixture of sevoflurane
(4%) and oxygen, intubated for mechanical ventilation (60 cpm, tidal volume set at 1
ml/100g; Harvard Small Animal Ventilator, Model 683) and placed over a heating
pad (body temperature is maintained at 37°C). Under binocular surgical microscopy
(Wild M651.MS-D, Leica;Herbrugg, Switzerland), the right jugular vein was
cannulated for fluid administration (prewarmed Lactated Ringer's solution) to
compensate for perioperative fluid losses. The heart was exposed by a median
sternotomy and the pericardium was widely opened. Descending thoracic aorta was
dissected and a silk suture 2/0 was placed around it and passed through a plastic tube
in order to allow aortic constriction during the experimental protocol. LV
hemodynamic function was measured with conductance catheters (model-FTM-
1912B-8018, 1.9F, Scisense), connected to MVP-300 conductance system (Millar
Instruments; Houston, USA) through an interface cable (PCU-2000 MPVS, FC-MR-
4, Scisense), coupled to PowerLab16/30 converter (ADInstruments) and to a personal
computer for data acquisitions. Parameters from conductance catheter were recorded
at a sampling rate of 1000Hz, in order to accurately capture all of the features of the

pressure-volume waveforms produced by the fast beating hearts of rats.

Experimental Protocol

After complete instrumentation, the animal preparation was allowed to stabilize for 15
min. Next, hemodynamic recordings were performed in baseline conditions and under
inferior vena cava or ascending aortic occlusions, the latter producing isovolumetric

heartbeats. Sustained and selective acute pressure overload to the LV was obtained by
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controlled banding of the thoracic descending aorta, just above the diaphragm, during
120 minutes (min). Briefly, this was performed by gently pulling a silk suture,
previously placed around the descending thoracic aorta, against a plastic tube, until an
elevation of ~35% of left ventricular peak systolic pressure (LVPmax) was obtained.
At that time, the constriction was fixed with the help of a clamp and the imposed
overload was continuously monitored. Adjustment of the constriction was provided in
order to maintain the same cardiac overload during the entire protocol. Hemodynamic
measurements were made in baseline steady-state conditions (immediately before
banding), at 60 and 120 minutes of banding. All recordings were obtained with the
ventilation suspended. Data were stored and analyzed with PVAN3.5 software

(Millar).

Measured parameters

Heart rate (HR), peak systolic pressure (Pmax), end-systolic pressure (ESP), end-
diastolic pressure (EDP), peak rate of pressure rise (dP/dtmax), peak rate of pressure
fall (dP/dtmin), constant time of isovolumetric pressure decay (Tau), maximum
volume (Vmax), minimum volume (Vmin), end-diastolic volume (EDV), end-systolic
volume (ESV), stroke volume (SV), ejection fraction (EF), cardiac output (CO),
stroke work (SW) and maximal elastance (Emax), were obtained using PVAN3.5
(Millar Instruments). To assess intrinsic myocardial function, end-systolic pressure—
volume relation (ESPVR), preload-recrutable stroke work (PRSW), end-diastolic
pressure—volume relation (EDPVR) and arterial elastance (Fa) were determined from
pressure—volume loops recorded during transient preload reduction by gently pulling
the inferior vena cava with a silk suture previously placed around it. An estimate of

myocardial oxygen consumption was made from the double product obtained by
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multiplying heart rate with LVPmax, and fractional shortening was calculated as FS

(%)= [(LVEDV - LVESV)/LVEDV] *100 (35).

Conductance calibration

Parallel conductance values were obtained by the injection of approximately 100 ul of
10% NaCl into the right atrium. Calibration from relative volume units (RVU)
conductance signal to absolute volumes (ul) was undertaken using a previously

validated method of comparison to known volumes in Perspex wells (41).

Tissue Preparation

The heart and right gastrocnemius muscle from animals that were euthanized at the
end of the chronic protocols (not submitted to hemodynamic evaluation), were
excised and weighed. Under binocular magnification (x3.5), the LV+septum was
dissected from the RV and weighed separately. Heart weight, LV and gastrocnemius
were normalized to body weight (BW). Samples from LV were fixed and prepared for
light microscopy (LM) following routine procedures, or frozen with liquid nitrogen

for protein and enzymatic studies.

Microscopic evaluation

Cubic pieces coming from the basal, intermediate, and apical cardiac regions of each
LV were fixed [4% (v/v) buffered paraformaldehyde] by diffusion during 24 hours
and subsequently dehydrated with graded ethanol and included in paraffin blocks.
Xilene was used in the transition between dehydration and impregnation. LV blocks
were embedded in the upright position in order to distinguish the endocardium,

midwall, and the epicardium of the LV free wall in cross sections. Serial sections (5
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um of thickness) of paraffin blocks were cut by a microtome and mounted on silane-
coated slides. The slides were dewaxed in xylene and hydrated through graded
alcohols finishing in phosphate buffered saline solution prepared by dissolving
Na,HPO, (1.44 g), KH,PO, (0.24 g), NaCl (8 g), KCI (0.2 g) and adjusting pH to 7.2.
Deparaffinised sections from LV were stained for haematoxylin-eosin, performed by
immersing slides in Mayer’s haematoxylin solution for 3-4 min followed by
immersion in 1% eosin solution for 7 min, dehydration with graded alcohols through
xylene, and mounted with DPX. Cardiomyocytes surface area (CSA) was measured
and only round to ovoid nucleated myocyte were considered for analysis. Around
1000 cardiomyocytes per group were analyzed. In order to determine the amount of
cardiac fibrosis, LV sections were stained with Picrosirius red and quantified as
described before (16). In each section, 5 representative images were considered for
analysis to compensate for variations within sections. For quantitative comparisons,

random microscopic fields (magnification of x400) from each region were considered.

Left Ventricular Mitochondrial isolation

Left ventricle mitochondria isolation was performed using the conventional methods
of differential centrifugation, as previously described in detail (2). All procedures
were performed at 0-4°C. Briefly, after excised, samples from left ventricles (pools of
2 animals) were immediately minced in an ice-cold isolation medium containing 250
mM sucrose, 0.5 mM EGTA, 10 mM HEPES-KOH (pH 7.4), and 0.1% defatted BSA
(catalog. no A6003, Sigma). The minced blood-free tissue was resuspended in
isolation medium containing protease subtilopeptidase A type VIII (catalog no.
P5380, Sigma; 1 mg/g tissue) and homogenized with tightly fitted Potter-Elvehjen

homogenizer and Teflon pestle. The suspension was incubated for 1 minute (4°C) and
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rehomogenized. An 0.5 mL aliquot of cardiac muscle homogenate was reserved for
western blotting analysis of specific protein targets and the remaining homogenate
was centrifuged at 14,500 g during 10 minutes. The supernatant fluid was decanted,
and the pellet, essentially devoid of protease, was gently resuspended in isolation
medium. The suspension was centrifuged at 750 g for 10 minutes, and the resulting
supernatant was centrifuged at 12,000 g for 10 minutes. The pellet was resuspended
and repelleted at 12,000 g for 10 minutes. The final pellet, containing the
mitochondrial fraction, was gently resuspended in a washing medium containing 250
mM sucrose, 10 mM HEPES-KOH, pH 7.4. Mitochondrial protein concentration was
spectrophotometrically estimated with the colorimetric method “RC DC protein

assay” (Bio-Rad) using bovine serum albumin (BSA) as standard.

Blue-native PAGE separation of mitochondrial membrane complexes and in-gel
activity of respiratory chain complex IV and V

BN-PAGE was performed using the method described by Schagger and von Jagow
(47). Briefly, mitochondrial fractions (200 pug of protein) from each experimental
group were pelleted by centrifugation at 20000g for 10 minutes and then resuspended
in solubilization buffer (50 mM NaCl, 50 mM Imidazole, 2 mM e-amino n-caproic
acid, | mM EDTA pH 7.0) with 1 % (w/v) digitonin. After 10 minutes on ice,
insoluble material was removed by centrifugation at 20000g for 30 minutes at 4°C.
Soluble components were combined with 0.5 % (w/v) Coomassie Blue G250, 50 mM
€-amino n-caproic acid, 4 % (w/v) glycerol and separated on a 4-13 % gradient
acrylamide gradient gel with 3.5 % sample gel on top. Anode buffer contained 25 mM
Imidazole pH 7.0. Cathode buffer (50 mM tricine and 7.5 mM Imidazole pH 7.0)

containing 0.02 % (w/v) Coomassie Blue G250 was used during 1 hour at 70 V, the

53



time needed for the dye front reach approximately one-third of the gel. Cathode buffer
was then replaced with one containing only 0.002 % (w/v) Coomassie Blue G250 and
the native complexes were separated at 200 V for 4 h at 4 °C. A native protein
standard HMW-native markers (GE Healthcare, Buckinghamshire, UK) was used.
The gels were stained with Coomassie Colloidal for protein visualization or incubated
at 37 °C with 35 mM Tris, 270 mM glycine buffer, pH 8.3, supplemented with 14 mM
MgSO,, 0.2 % (w/v) Pb(NO,),, and 8 mM ATP for evaluation of the ATP hydrolysis
activity of complex V (54). Lead phosphate precipitation that is proportional to the
enzymatic ATP hydrolysis activity, was stopped by 50 % (v/v) methanol (30 min),
and the gels were then transferred to water. Gels were scanned in Molecular Imager
Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA). Band detection and analysis
were performed using QuantityOne Imaging software (v4.6.3, Bio-Rad).

Spectrophotometric evaluation of respiratory chain complex V was also measured as
previously described (43). The phosphate produced by hydrolysis of ATP reacts with
ammonium molybdate in the presence of reducing agents to form a blue-colour
complex, the intensity of which is proportional to the concentration of phosphate in

solution. Oligomycin was used as an inhibitor of mitochondrial ATPase activity.

Western blotting analysis

Equivalent amounts of total protein from each group were electrophoresed on a 12.5
% SDS-PAGE as described by Laemmli (31). One sample from each of the groups
that were studied was applied in the same gel. Gels containing total proteins or
mitochondrial proteins (separated by 2-D BN-PAGE) were blotted onto a
nitrocellulose membrane (Whatman®, Protan®) and nonspecific binding was blocked

with 5 % (w/v) dry non-fat milk in TBS-T (100 mM Tris, 1.5 mM NacCl, pH 8.0 and
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0.5 % Tween 20). Membranes were then incubated with primary antibody solution
(1:1000 dilution; mouse anti-ATP synthase subunit beta, ab14730, abcam; mouse
anti-SERCA2 ATPase, ab2861, abcam; rabbit anti-calcineurin A, ab52761; mouse
anti-3-nitrotyrosine, clone 2A8.2, Chemicon; rabbit anti- osteopontin, ab8448; rabbit
anti-Akt, #9272, Cell Signalling; rabbit anti-Phospho-Akt, #4058, Cell Signalling;
rabbit anti-mTOR, #2983, Cell Signalling; rabbit anti-Phospho-mTOR, #2971, Cell
Signalling; rabbit anti-atrogin-1, #AP2041, ECM Bioscience). After 2 hours
incubation, the membrane was washed with TBS-T and incubated with anti-mouse or
anti-rabbit IgG peroxidase secondary antibody (1:1000 dilution, Amersham
Pharmacia Biotech). Immunoreactive bands were detected with enhanced
chemiluminescence reagents (ECL, Amersham Pharmacia Biotech) according to the
manufacturer's procedure and images were recorded using X-ray films (Kodak
Biomax light Film, Sigma). The films and the gels were scanned in Molecular Imager
Gel Doc XR+ System (Bio-Rad) and analyzed with QuantityOne software version
4.6.3 (Bio-Rad, Hercules, CA). Four independent experiments were considered for

analysis. Equal loading was confirmed by staining the membrane with Ponceau S.

MHC isoform determination

Left ventricles were weighed and transferred to a glass homogenizer. A 1:19 ratio of
100 mM phosphate buffer, pH 7.4, containing 0.02% bovine serum albumin was
added. Tissue sections were thoroughly homogenized with tightly fitted Potter-
Elvehjen homogenizer and Teflon pestle. Total protein concentration was
spectrophotometrically assayed with the colorimetric method “RC DC protein assay”
(Bio-Rad) using bovine serum albumin (BSA) as standard. Alpha- and beta-isoforms

of cardiac myosin heavy chain were separated by gel electrophoresis following the
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procedure described by Talmadge and Roy (50). The amount of protein run on the gel
was 1 mg per lane. To avoid inter-gel variation, one sample from each of the groups
studied was applied in the same gel. The stacking gel consisted of 30% glycerol and 4
% acrylamide:N,N’-methylene-bis-acrylamide in the ratio of 50:1, 70 mM Tris (pH
6.7),4 mM EDTA, and 0.4% sodium dodecyl sulfate (SDS). The separating gels were
composed of 30% glycerol, 8% acrylamide-bis (50:1), 0.2 M Tris (pH 8.8), 0.1 M
glycine, and 0.4% SDS. Polymerization was initiated with 0.05% N,N,N’,N’-
tetramethylethylenediamine and 0.1% ammonium persulfate. The gels were run in a
Mini-Protean system (Bio-Rad) at 4°C. The running conditions were 70V (constant
voltage) for 30 hours. The gels were stained with Coomassie Colloidal, scanned in
Molecular Imager Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA) and optical
density analysis of MHC bands was performed using QuantityOne Imaging software
(v4.6.3, Bio-Rad). Five independent experiments assayed in duplicate were

considered for analysis.

Statistical Analysis

Kolmogorov-Smirnov test was performed to check the normality of the data. Kruskal-
Wallis test followed by Dunns test was used for non-normal data (cross sectional
analysis of cardiomyocytes). Between group’s comparisons of baseline
hemodynamics, morphometric, fibrosis, Western blot, MHC, BN-PAGE and
enzymatic activity data were performed with one-way ANOVA. For comparisons of
hemodynamic data during pressure overload, a repeated measures two-way ANOVA
test was performed. Significant differences were evaluated with Tukey’s post hoc

analysis. All statistical analysis was performed with Graph Pad Prism software
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(version 5.0). Data are expressed as mean + standard deviation (SD). Significance

level was set at P<0.05.
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RESULTS

General morphometric features of animals submitted to the chronic protocols

Table 1 summarizes the analyzed morphometric parameters. In comparison to Cont
group, all other groups presented lower BW (P<0.001). Gastrocnemius weight was
reduced in Ex group (P<0.05 vs. Cont) but not when normalized to BW. Only
exercise training resulted in increased HW/BW (P<0.001 vs. Cont). Regarding LV
mass evaluated by the LV/BW ratio, it was significantly increased in Ex (P<0.01 vs.

Cont) and Dob (P<0.05 vs. Cont).

Characterization of cardiac function under baseline steady-state conditions

In vivo contractile function was assessed with a pressure-volume catheter. Full
hemodynamic data is summarized in Table 2. Heart rate was significantly increased in
Ex in comparison to all other groups (P<0.05). No differences were noted on Pmax,
DP, ESP, EDP or dP/dtmin. Peak rate of pressure rise was significantly reduced in
Dob (P<0.05 vs. Cont). Relaxation, evaluated by the constant time Tau, was improved
in Ex (P<0.05 vs. all other groups). Considering volume-derived parameters, no
differences were detected.

Pressure-volume derived parameters obtained from inferior vena cava occlusion,
namely ESPVR, PRSW and Emax, were found to be significantly increased in Ex
(P<0.05 vs. all other groups). No alterations were observed in EDPVR (P>0.05).
Figure 2 shows typical examples of pressure-volume loops under vena cava occlusion

from where these parameters were acquired.
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Characterization of cardiac function in response to beat-to-beat isovolumetric

contractions and to sustained acute pressure elevations

As illustrated in Figure 3, isovolumetric heartbeats presented similar peak systolic
pressure and dP/dtmax in all groups, but shorter time constant Tau (faster relaxation)
in Ex and Dob (P<0.05 vs. Cont).

Pressure overload by descending thoracic aortic banding induced a 35% increase in
systolic pressure in all groups, as shown by the rise in LV Pmax (Figure 4-A). All
groups were able to maintain the imposed overload for the entire duration of the
banding, and no differences in LV Pmax were observed between groups at any
moment. Peak rate of pressure rise (Figure 4-B) showed a compensatory increase at
60 min of banding in Ex and Dob, although significant only in the latter (P<0.05 vs.
baseline). At 120 min of pressure overload, dP/dtmax further increased in Ex (P<0.05
vs. Cont and Dob). A slower relaxation (prolonged time constant Tau, Figure 4-D,
and smaller dP/dtmin, not shown), was observed in Cont group after 60 (P<0.05 vs.
baseline, Dob and Ex) and 120 min of banding (P<0.05 vs. baseline and Ex). Only

minor changes were observed in HR and EDP (data not shown).

Characterization of the hypertrophic phenotype

As depicted in Figure 5-A and B, cardiomyocyte hypertrophy was found in Ex (22%)
and Dob (38%) (P<0.001 vs. Cont), but more marked in Dob (P<0.001 vs. Ex). No
alterations were detected in terms of collagen deposition or osteopontin-1 protein
expression (Figure 5-C and D).

SERCAZ2a (Figure 6-A) was significantly increased in Dob and Ex (P<0.05 vs. Cont).

A modest increase in the beta/alpha-MHC ratio was present in all experimental
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groups (Figure 6-B) but without significance (P>0.05). Regarding calcineurin protein
expression (Figure 6-C), we observed normal values in all groups. The Akt/mTOR
pathway was also assessed. No differences were noted in the expression of total Akt.
However, both Dob and Ex groups exhibited a significant increase of Ser'’
phosphorylation of Akt (Figure 6-D) (P<0.05 vs. Cont). Regarding mTOR, a
significant increase was found in the expression of its total levels and of its

phosphorylation at Ser****

in Dob and Ex group (P<0.05 vs. Cont).

The BN-PAGE densitometric analysis did not reveal differences in the protein
complexes organization, as can be depicted from the representative density traces for
complexes’ bands (Figure 7-A). In-gel activity showed elevated complex IV (Figure
7-B) and V (Figure 7-C) activity in Dob (P<0.05 vs. all groups) and Ex (P<0.05 vs
Cont). Spectrophotometric quantification of respiratory chain complex V was also
performed in order to corroborate the in-gel activity of complex V. As shown in

Figure 7-D, elevated activity of this complex was detected in Dob and Ex (P<0.05 vs.

Control).
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DISCUSSION

The present study addressed the question whether chronic intermittent cardiac
overload induced by beta-adrenergic stimulation with dobutamine could provide
cross-tolerance to acute sustained pressure overload. We showed that chronic
intermittent dobutamine administration, similarly to exercise training, prevents from
diastolic dysfunction secondary to acute sustained pressure overload. The improved
tolerance evidenced by both dobutamine-treated and trained animals may be related
with their similar cardiac hypertrophic phenotype.

In this work, animals were submitted to intermittent pharmacological cardiac
overload to test whether they could develop cross-tolerance to acute pressure overload
and a phenotype similar to that induced by exercise training. Namely, we used a
dosage of dobutamine (2mg/kg) that increased cardiac overload and contractility (9)
(Figure 1). Dobutamine, a beta 1- and 2-adrenoreceptor agonist (51), reasonably
mimicked the duration and magnitude of an acute cardiac overload imposed by the
exercise training protocol (36). This strategy allowed us to have a certain control over
the magnitude of the hemodynamic demand that was imposed. This issue is of major
importance since if the stimulus is too severe, cells may not have sufficient time for
the homeostatic recovery and may fail to activate or maintain a protective response,
resulting in the activation of signaling cascades that eventually will favor cellular
death pathways (21, 29, 30). The cumulative effects of such imbalance may lead to
cardiac dysfunction in the long-term (34). This notion is corroborated by our previous
findings (39) that the healthy normal heart develops severe functional disturbances
accompanied by the activation of important signaling pathways implicated in
maladaptive remodeling in response to an acute pressure overload. Moreover, a link

between long-term intensive exercise training, right ventricular dysfunction and
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increased susceptibility to arrhythmia was recently shown in a rat model, reinforcing
the concept that the beneficial effects of exercise training may be dose-dependent (4).
Given that in the study from Perrino et al. (45) the severity of overload was not
considered, the maladaptation developed by the iTAC may reflect the cumulative
damaging effects of exaggerated intermittent hemodynamic overloads. In our study,
the controlled pharmacologically-induced intermittent cardiac overload did not result
in any compromise of cardiac function at baseline nor in response to single-beat
afterload elevations, which is an intervention that allows the detection of diastolic
dysfunction that may not be evident during evaluation at rest, but is revealed during
exercise or hemodynamic stress (11, 32).

As evidenced by the hemodynamic results, exercised animals tolerated very
well the 35% increase in cardiac overload, while significant diastolic dysfunction was
observed in sedentary animals. These observations are in line with our previous
findings that contrarily to sedentary animals, the heart from exercised animals is able
to work under loading conditions without decompensating (39). It is important to
note that the severity of the banding was reduced from 60% (previous study) to 35%
(present study) of LV peak systolic pressure, which further highlights the
vulnerability of the normal healthy heart to sustained acute increases in afterload.
Remarkably, chronic administration of dobutamine conferred protection against
cardiac dysfunction, as evidenced by the stability of diastolic parameters, resembling
the response of the exercised animals. The enhanced tolerance observed in our study
is in line with the preconditioning effects induced by dobutamine (3) and other betal-
and 2-adrenergic agonists (46) in the rat heart against ischemia-reperfusion injury.

The similar performance of Dob and Ex groups in response to the sustained

acute pressure overload suggests that their respective conditioning programs may
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have promoted similar beneficial adaptations at the cardiac level. In fact, dobutamine
has been shown to reproduce some of the typical features of exercise training, namely
cardiac hypertrophy (7, 9) without fibrosis (9), cardiovascular and metabolic
enhancement (14, 33, 51), increased mitochondrial activity (8), improvement of
vascular endothelial function (44), increased cardiac (7) and skeletal (14) muscle
capillary density, without developing cardiac adrenergic desensitization (12). In order
to provide some insights into the mechanisms underlying the protective effects of
intermittent cardiac overload induced by dobutamine, we analyzed some markers of
cardiac remodeling. Adaptive hypertrophy is characterized by hypertrophy of
cardiomyocytes with little or no fibrosis (37, 53). We found that cardiomyocyte
hypertrophy was present in Dob and Ex groups without increased levels of fibrosis.
Consistently, we also detected normal levels of osteopontin-1, a matricellular protein
that is increased during stress-induced cardiac remodeling, that was shown to mediate
cardiac fibrosis and diastolic dysfunction (53). This data, in addition to the unchanged
diastolic stiffness (normal EDPVR and EDP at baseline), suggest normal intrinsic
myocardial function (23). Therefore, it seems plausible to assume that these factors
did not account for the divergent performance of Ex and Dob from Cont.

To further explore the hypertrophic phenotype developed by each of the
interventions, we assessed the Akt/mTOR and calcineurin protein expression, two
pathways with distinct roles in the promotion of adaptive or maladaptive hypertrophy,
respectively (5, 27). Our data shows that the while the former was activated in Dob
and Ex groups, the last was not. This may contribute to explain, at least partially, the
similar results obtained by Dob and Ex in response to acute pressure overload. Indeed,
activation of the Akt/mTOR signal cascade was proposed to be related with improved

contractile function and calcium handling (27).
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Protein levels of SERCA2a are typically increased in adaptive cardiac
hypertrophy. We found increased total protein levels of SERCA2a in Ex and Dob
while normal values were present in Cont. Although this does not provide information
about its functionality, the increased baseline levels together with the unaffected
dP/dtmin and time constant Tau in Ex and Dob after acute pressure overload suggest
preserved activity of SERCA2a (13) and a more efficient transport of calcium to the
sarcoplasmic reticulum (38). The accumulation of calcium in the cytosol is implicated
in mitochondrial swelling (39, 49) and proteolysis (18, 19). Calcium overload also
decreases mitochondrial ATP (49) production and thus ultimately may also contribute
to diastolic dysfunction by limiting the energy for SERCA2a activity. The greater
activity of mitochondrial complexes IV and V found in Dob and Ex suggests that
these groups are more prepared to support the energetic cost of an elevated cardiac
overload, without compromising the ATP that is needed to maintain intracellular
homeostasis.

A slight increase in the beta-to-alpha MHC ratio was observed in Dob and Ex,
but this phenomenon is apparently not a marker of failure (6). Indeed, we showed that
this small shift to beta-MHC isoform did not compromise the ability to tolerate the
increased overload. Our data is corroborated by findings from Hwang and coworkers
who reported increased beta-MHC in the LV of trained rats who also exhibited an
improved cardiac response to a brief period of ischemia and reperfusion (24).
Moreover, it was shown that mice expressing predominantly cardiac beta-MHC
isoform tolerate exercise training without any sign of maladaptation (28).Beta-MHC
can generate cross-bridge force with higher economy of energy consumption than
alpha-MHC (28). Therefore, it could be possible that the more economical phenotype

from Ex and Dob consumed less energy for contraction to support the elevated
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cardiac overload, leaving more ATP to maintain intracellular homeostasis (24), and
thus avoiding diastolic dysfunction.

Overall, our data suggest that the magnitude of the initial hemodynamic
stimulus may influence the subsequent development of an adaptive or maladaptive
cardiac phenotype. Indeed, the chronic submission to intermittent cardiac overload
induced by dobutamine provided cross-tolerance to subsequent acute pressure
overload. The protection afforded by dobutamine administration seems to be related
with a more physiological hypertrophic phenotype resembling some features of
exercise induced-hypertrophy. We propose that, besides the type of the initial
hemodynamic stimulus (45), its duration, magnitude or severity may be determinant

for the subsequent development of an adaptive or maladaptive cardiac phenotype.

65



ACKNOWLEDGMENTS
We are very thankful to Miss Celeste Resende for her technical support with animal

care, training protocol and tissue processing for morphological evaluation.

66



GRANTS

This study was supported by the Portuguese Foundation for Science and Technology
Grant PTDC/DES/104567/2008. Daniel Moreira-Gongalves and Hélder Fonseca are
supported by the Portuguese Foundation for Science and Technology Grants

SFRH/BD/33123/2007 and SFRH/BD/38110/2007, respectively.

67



Disclosures

None

68



REFERENCES

1. Abel ED, and Doenst T. Mitochondrial adaptations to physiological vs.
pathological cardiac hypertrophy. Cardiovasc Res 90: 234-242,2011.

2. Ascensao A, Magalhaes J, Soares JMC, Ferreira R, Neuparth M],
Marques F, Oliveira PJ, and Duarte JA. Moderate endurance training prevents
doxorubicin-induced in vivo mitochondriopathy and reduces the development of
cardiac apoptosis. Am J Physiol Heart Circ Physiol 289: H722-731, 2005.

3. Asimakis GK, and Conti VR. Preconditioning with dobutamine in the
isolated rat heart. Life Sci 57: 177-187, 1995.

4. Benito Ba, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif J-C,
Brugada J, Nattel S, and Mont L. Cardiac Arrhythmogenic Remodeling in a Rat
Model of Long-Term Intensive Exercise Training / Clinical Perspective. Circulation
123: 13-22,2011.

5. Bernardo BC, Weeks KL, Pretorius L, and McMullen JR. Molecular
distinction between physiological and pathological cardiac hypertrophy: Experimental
findings and therapeutic strategies. Pharmacol Ther 128: 191-227,2010.

6. Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D,
Smithson L, Ockaili R, McCord JM, and Voelkel NF. Chronic Pulmonary Artery
Pressure Elevation Is Insufficient to Explain Right Heart Failure. Circulation 120:
1951-1960, 2009.

7. Brown MD, and Hudlicka O. Capillary supply and cardiac performance in
the rabbit after chronic dobutamine treatment. Cardiovasc Res 25: 909-915, 1991.

8. Buser PT, Camacho SA, Wu ST, Higgins CB, Jasmin G, Parmley WW,
and Wikman-Coffelt J. The effect of dobutamine on myocardial performance and
high-energy phosphate metabolism at different stages of heart failure in
cardiomyopathic hamsters: a 31P MRS study. Am Heart J 118: 86-91, 1989.

9. Buttrick P, Malhotra A, Factor S, Geenen D, and Scheuer J. Effects of
chronic dobutamine administration on hearts of normal and hypertensive rats. Circ
Res 63: 173-181, 1988.

10. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol
5:374-381, 2009.

11. Correia-Pinto J, Henriques-Coelho T, Roncon-Albuquerque R, Lourenco
A, Melo-Rocha G, Vasques-Noévoa F, Gillebert T, and Leite-Moreira A. Time
course and mechanisms of left ventricular systolic and diastolic dysfunction in
monocrotaline-induced pulmonary hypertension. Basic Res Cardiol 104: 535-545,
2009.

12.  Davidson WR, Jr., Banerjee SP, and Liang CS. Dobutamine-induced
cardiac adaptations: comparison with exercise-trained and sedentary rats. Am J
Physiol 250: H725-730, 1986.

13. Demirel HA, Powers SK, Zergeroglu MA, Shanely RA, Hamilton K,
Coombes J, and Naito H. Short-term exercise improves myocardial tolerance to in
vivo ischemia-reperfusion in the rat. J Appl Physiol 91: 2205-2212,2001.

14.  Desplanches D, Favier R, Sempore B, and Hoppeler H. Whole body and
muscle respiratory capacity with dobutamine and hindlimb suspension. J Appl Physiol
71:2419-2424,1991.

15. Dorn GW, 2nd, and Force T. Protein kinase cascades in the regulation of
cardiac hypertrophy. J Clin Invest 115: 527-537, 2005.

16. Falcao-Pires I, Palladini G, Goncalves N, van der Velden J, Moreira-
Gongalves D, Miranda-Silva D, Salinaro F, Paulus W, Niessen H, Perlini S, and

69



Leite-Moreira A. Distinct mechanisms for diastolic dysfunction in diabetes mellitus
and chronic pressure-overload. Basic Res Cardiol 1-14,2011.

17. Freimann S, Scheinowitz M, Yekutieli D, Feinberg MS, Eldar M, and
Kessler-Icekson G. Prior exercise training improves the outcome of acute myocardial
infarction in the rat: Heart structure, function, and gene expression. J Am Coll Cardiol
45: 931-938,2005.

18. French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, and Powers
SK. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD,
calcium-handling proteins, and calpain. FASEB J 22: 2862-2871, 2008.

19. French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KKW, and
Powers SK. Ischemia-reperfusion-induced calpain activation and SERCA2a
degradation are attenuated by exercise training and calpain inhibition. Am J Physiol
Heart Circ Physiol 290: H128-136, 2006.

20.  Frey N, Katus HA, Olson EN, and Hill JA. Hypertrophy of the heart: a new
therapeutic target? Circulation 109: 1580-1589, 2004.

21. Fulda S, Gorman AM, Hori O, and Samali A. Cellular stress responses: cell
survival and cell death. Int J Cell Biol 2010: 214074, 2010.

22.  Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, and Clark
AM. A Meta-Analysis of the Effect of Exercise Training on Left Ventricular
Remodeling in Heart Failure Patients: The Benefit Depends on the Type of Training
Performed. J Am Coll Cardiology 49: 2329-2336, 2007.

23.  Hessel MHM, Steendijk P, den Adel B, Schutte CI, and van der Laarse A.
Characterization of right ventricular function after monocrotaline-induced pulmonary
hypertension in the intact rat. Am J Physiol Heart Circ Physiol 291: H2424-H2430,
2006.

24. Hwang H, Reiser PJ, and Billman GE. Effects of exercise training on
contractile function in myocardial trabeculae after ischemia-reperfusion. J Appl
Physiol 99: 230-236, 2005.

25. Iemitsu M, Maeda S, Jesmin S, Otsuki T, Kasuya Y, and Miyauchi T.
Activation pattern of MAPK signaling in the hearts of trained and untrained rats
following a single bout of exercise. J Appl Physiol 101: 151-163, 2006.

26. Iemitsu M, Maeda S, Otsuki T, Goto K, and Miyauchi T. Time Course
Alterations of Myocardial Endothelin-1 Production During the Formation of Exercise
Training, Ailnduced Cardiac Hypertrophy. Exp Biol Med 231: 871-875,2006.

27.  Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli
G, and Ellingsen O. Activation or inactivation of cardiac Akt/mTOR signaling
diverges physiological from pathological hypertrophy. J Cell Physiol 214: 316-321,
2008.

28.  Krenz M, and Robbins J. Impact of beta-myosin heavy chain expression on
cardiac function during stress. J Am Coll Cardiol 44: 2390-2397,2004.

29.  Kultz D. Evolution of the cellular stress proteome: from monophyletic origin
to ubiquitous function. J Exp Biol 206: 3119-3124,2003.

30.  Kultz D. Molecular and evolutionary basis of the cellular stress response.
Annu Rev Physiol 67: 225-257, 2005.

31.  Laemmli UK. Cleavage of structural proteins during the assembly of the head

of bacteriophage T4. Nature 227: 680-685, 1970.
32. Leite-Moreira AF, Correia-Pinto J, and Gillebert TC. Afterload induced

changes in myocardial relaxation: a mechanism for diastolic dysfunction. Cardiovasc
Res 43: 344-353, 1999.

70



33. Liang C, Tuttle RR, Hood WB, Jr., and Gavras H. Conditioning effects of
chronic infusions of dobutamine. Comparison with exercise training. J Clin Invest 64:
613-619, 1979.

34. McEwen BS. Protective and damaging effects of stress mediators. N Engl J
Med 338: 171-179, 1998.

35.  Medeiros A, Rolim NPL, Oliveira RSF, Rosa KT, Mattos KC, Casarini
DE, Irigoyen MC, Krieger EM, Krieger JE, Negrao CE, and Brum PC. Exercise
training delays cardiac dysfunction and prevents calcium handling abnormalities in
sympathetic hyperactivity-induced heart failure mice. J Appl Physiol 104: 103-109,
2008.

36. Miki K, Kosho A, and Hayashida Y. Method for continuous measurements
of renal sympathetic nerve activity and cardiovascular function during exercise in
rats. Exp Physiol 87: 33-39, 2002.

37. Miyachi M, Yazawa H, Furukawa M, Tsuboi K, Ohtake M, Nishizawa T,
Hashimoto K, Yokoi T, Kojima T, Murate T, Yokota M, Murohara T, Koike Y,
and Nagata K. Exercise Training Alters Left Ventricular Geometry and Attenuates
Heart Failure in Dahl Salt-Sensitive Hypertensive Rats. Hypertension 53: 701-707,
2009.

38.  Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T,
Guerrero JL, Gwathmey JK, Rosenzweig A, and Hajjar RJ. Adenoviral gene
transfer of SERCA2a improves left-ventricular function in aortic-banded rats in
transition to heart failure. Proc Natl Acad Sci U S A 97: 793-798, 2000.

39.  Moreira-Goncalves D, Henriques-Coelho T, Fonseca HM, Ferreira RM,
Amado FM, Leite-Moreira AF, and Duarte JA. Moderate exercise training
provides left ventricular tolerance to acute pressure overload. Am J Physiol Heart
Circ Physiol 300:H1044-52.

40. Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE, and Vatner
SF. Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. Am
J Physiol Heart Circ Physiol 284: H1043-H1047,2003.

41. Pacher P, Mabley JG, Liaudet L, Evgenov OV, Marton A, Haské G,
Kollai M, and Szabé C. Left ventricular pressure-volume relationship in a rat model
of advanced aging-associated heart failure. Am J Physiol Heart Circ Physiol 287:
H2132-H2137,2004.

42.  Pacher P, Nagayama T, Mukhopadhyay P, Batkai S, and Kass DA.
Measurement of cardiac function using pressure-volume conductance catheter
technique in mice and rats. Nat Protoc 3: 1422-1434,2008.

43. Padrao Al, Ferreira RMP, Vitorino R, Alves RMP, Neuparth MJ, Duarte
JA, and Amado F. OXPHOS susceptibility to oxidative modifications: The role of
heart mitochondrial subcellular location. Biochim Biophys Acta 1807: 1106-1113,
2011.

44, Patel MB, Kaplan IV, Patni RN, Levy D, Strom JA, Shirani J, and
LeJemtel TH. Sustained improvement in flow-mediated vasodilation after short-term
administration of dobutamine in patients with severe congestive heart failure.
Circulation 99: 60-64, 1999.

45. Perrino C, Prasad SVN, Mao L, Noma T, Yan Z, Kim H-S, Smithies O,
and Rockman HA. Intermittent pressure overload triggers hypertrophy-independent
cardiac dysfunction and vascular rarefaction. J Clin Invest 116: 1547-1560, 2006.

46.  Salie R, Moolman J, and Lochner A. The Role of -adrenergic Receptors in
the Cardioprotective Effects of Beta-Preconditioning (BPC). Cardiovasc Drugs Ther
25:31-46,2011.

71



47. Schagger H, and von Jagow G. Blue native electrophoresis for isolation of
membrane protein complexes in enzymatically active form. Anal Biochem 199: 223-
231, 1991.

48. Simonsen ML, Alessio HM, White P, Newsom DL, and Hagerman AE.
Acute physical activity effects on cardiac gene expression. Exp Physiol 95: 1071-
1080, 2010.

49.  Starnes JW, Barnes BD, and Olsen ME. Exercise training decreases rat
heart mitochondria free radical generation but does not prevent Ca2+-induced
dysfunction. J Appl Physiol 102: 1793-1798,2007.

50.  Talmadge RJ, and Roy RR. Electrophoretic separation of rat skeletal muscle
myosin heavy-chain isoforms. J Appl Physiol 75: 2337-2340, 1993.

51. Tipton CM, and Sebastian L A. Dobutamine as a countermeasure for reduced
exercise performance of rats exposed to simulated microgravity. J Appl Physiol 82:
1607-1615, 1997.

52. Yang Y, Creer A, Jemiolo B, and Trappe S. Time course of myogenic and
metabolic gene expression in response to acute exercise in human skeletal muscle. J
Appl Physiol 98: 1745-1752,2005.

53. Yu Q, Vazquez R, Khojeini EV, Patel C, Venkataramani R, and Larson
DF. IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic
dysfunction in mice. Am J Physiol Heart Circ Physiol 297: H76-85, 2009.

54. Zerbetto E, Vergani L, and Dabbeni-Sala F. Quantification of muscle
mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue
native polyacrylamide gels. Electrophoresis 18: 2059-2064, 1997.

72



Figure Legends
FIGURE 1: Acute effects of subcutaneous administration of 2 mg/Kg of dobutamine
on left ventricular (LV) hemodynamics. Black arrows indicate the time when drug

was administrated. Error bars are Mean+SD

FIGURE 2: Typical examples of PV-loops obtained during inferior vena cava (IVC)

occlusion in animals submitted to the chronic protocols

FIGURE 3: Effects of total occlusion of the ascending aorta (isovolumetric
heartbeats) on LV Pmax, dP/dtmax and tau. Error bars are Mean+SD. *P<0.05 vs.
Cont

FIGURE 4: Effects of 120 min of acute pressure overload on LV systolic and
diastolic function. Baseline values were considered 100% and are represented by the
dashed line. Values at 60 and 120 min are represented as percentage of variation
relative to baseline. Error bars are Mean+SD. #P<0.05 vs. baseline *P<0.05 vs. Cont;

1P<0.05 vs. Dob, $P<0.05 vs. Ex

FIGURE 35: Effects of the different chronic protocols on cardiomyocyte hypertrophy,
fibrosis and osteopontin-1 protein levels. Results illustrated in figures are plotted in

graphic bars. Error bars are Mean+SD. *P<0.05 vs. Cont; £P<0.05 vs. Ex

FIGURE 6: Effects of the different chronic protocols on SERCA2a (A), MHC

isoforms (B), Calcineurin-a (C) and Akt/mTOR pathways (D and E). Error bars are

Mean=SD. *P<0.05 vs. Cont
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FIGURE 7: Effects of the different chronic protocols on oxidative phosphorylation:
A) LV mitochondrial BN-PAGE profile of the experimental groups; B) Representative
images of histochemical staining, with semi-quantitative analysis of in-gel activity of
complex IV; C) Representative images of histochemical staining, with semi-
quantitative analysis of in-gel activity of complex V; D) Activity of complex V
assayed by spectrophotometry. Error bars are Mean+SD. *P<0.05 vs. Cont; £P<0.05

vs. Ex
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Table 1: General morphometric characterization

Cont Dob Ex
BW (g) 437+34 376+49% 365437
Gast (g) 2.54+0.3 2.33+0.2 2.26+0.3*
Gast/BW (g/Kg) 5.840.9 6.4+0.5 6.3+0.7
HW (g) 1.10+0.1 1.05+0.1 1.08+0.2
HW/BW (g/Kg) 2.5+0.2 2.8+0.2 3.0+0.1°%*
LV+S (g) 0.74+0.1 0.71+0.1 0.71+0.1
LV+S/BW (g/Kg) 1.69+0.2 1.91+0.2 * 1.96+0.2 *

BW: body weight; Gast; gastrocnemius; Gast/BW: gastrocnemius/body weight; HW:
heart weight; HW/BW: heart weight/body weight; LV+S: left ventricle+septum;
LV+S/BW: left ventricle+septum/body weight; g: grams; Kg: kilograms. Data are
presented as Mean+SD *P<0.05 vs. Cont.
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Table 2: Baseline hemodynamic characterization

Cont Dob Ex
HR (bpm) 392.1+38.2 399+37 422424 *5
Pmax (mmHg) 121.8+£14.5 115.4+8.9 120.1+12 .4
DP (mHg/bpm) 47854+8344 468106117 50759+7315
ESP (mmHg) 113.2+16.5 106.0+8.9 111.2+12.5
EDP (mmHg) 5.8+2.5 4.6+2.1 3.9+0.9

dP/dtmax (mmHg/sec) 8868.4+£1708.3  7154.7+1192.4 *  8788.5+2177.3
dP/dtmin (mmHg/sec) -9221.3+1919.1  -8109.6+1780.2  -9607.5+2182.3

Tau W 9.0+1.0 9.0+1.0 7.7+£0.9%%
EDV (uL) 146.8+34.3 151.8+51.2 142.8+25.5
ESV (ul) 56.1£21.5 46.1+£25.7 42.4+x149
SV (ul) 101.1+24.1 117.8+£50.1 106.6+18.6
EF (%) 67.8+9.1 74.7+11.9 74.3+7.3
FS (%) 62+12 69+14 717

CO (uL/min) 39696.5+10350.0 46740.5+19162.1 44814.8+7362.7
SW (mmHg*ulL) 90978.3+2320.4  11072.9+5052.2 10305.2+2634.2
Ea (mmHg/ulL) 1.2+04 1.0£04 1.0+£0.2
ESPVR (mmHg/uL) 24x1.1 20+1.0 3.8+1.5 *F
PRSW 95.3+25.7 119.9+55.8 169.9+32.9 *}
Emax 58424 6.4+2.7 10.5+4.6 *f
EDPVR (mmHg/ulL) 0.06+0.0 0.05+0.0 0.06+0.0

HR: heart rate; bpm: beats per minute; Pmax: peak systolic pressure; DP: double
product; ESP: end-systolic pressure; EDP: end-diastolic pressure; dP/dtmax: peak
pressure rise; dP/dtmin: peak pressure fall; Tau: constant time; ESV: end-systolic
volume; EDV: end-diastolic volume; SV: stroke volume; EF: ejection fraction;
CO: cardiac output; SW: stroke work; FEa: arterial elastance; ESPVR: end-systolic
pressure volume relation; PRSW: preload-recrutable stroke work; Emax: maximal
elastance; EDPVR: end-diastolic pressure volume relation. Data are presented as
Mean+SD. *P<0.05 vs. Cont; 7P<0.05 vs. Dob.
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Cardioprotective effects of exercise training at different time points during
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Background- Increasing evidences suggest that right ventricle failure (RVF) in
pulmonary arterial hypertension (PAH) is associated with several modifications
including inflammation and neurohumoral activation, extracellular matrix remodeling
and mitochondrial dysfunction. We investigated whether exercise training at different
time points could act as an upstream modulator of multiple signaling pathways
involved in RV dysfunction in monocrotaline (MCT) model of PAH.

Methods and Results- Male Wistar rats were submitted to normal cage activity
(SED+MCT) or to treadmill exercise training before (EXbefore+MCT), during
(EXafter+MCT) and after (EXtreat+MCT) the establishment of RV pressure overload
induced by MCT (60 mg/kg). Exercise training prevented muscle atrophy
(EXbefore+MCT and EXafter+MCT) and attenuated cardiac hypertrophy (lower right
ventricle/body weight ratio and right ventricle/left ventricle ratio) in all MCT-trained
groups. Cardiac function was improved in MCT-trained groups with normalization of
cardiac remodeling (normal SERCAZ2a protein levels, beta/alpha MHC isoform, ET-1
and VEGF mRNA). Cardiac fibrosis, inflammation (lower TNF-alpha/IL-10 mRNA
ratio), and mitochondrial oxidative damage were reduced by exercise. Survival rate
was enhanced in all MCT-trained groups.

Conclusions- These data highlight the beneficial effects of exercise in an
experimental model of PAH and the putative underlying cardioprotective

mechanisms.

Keywords: exercise training; pulmonary hypertension; cardiac remodeling; right

ventricular dysfunction;
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INTRODUCTION

Pulmonary arterial hypertension (PAH) has a complex pathophysiology that includes
pulmonary vascular remodeling, right ventricle (RV) hypertrophy and failure.'
Potential mechanisms for adverse cardiac dysfunction leading to RV failure (RVF)
include cardiomyocyte remodeling,”” neurohumoral activation,”® inflammation,” and
oxidative stress,"” among others." Therapies that improve RV function through the
modulation of these pathways may be an interesting strategy for PAH, as recently
proposed.>'* 12

There are strong evidences that aerobic exercise training can prevent or revert LV
maladaptive remodeling in both experimental ™" and clinical settings."'* Whether
similar benefits can be extended to RVF remains largely unknown. Recent evidence
suggests that exercise is safe in patients with stable PAH.**' Exercise training may
have the unique potential to represent a unifying therapy, acting in multiple ways, and
operating as an upstream modulator of the multiple signaling pathways involved in
RV dysfunction in the context of PAH.

In this study, we intend to elucidate whether exercise training performed at different
time points, namely, before, during and after RV chronic pressure overload secondary
to experimental PAH induced by monocrotaline could prevent cardiac dysfunction

and remodeling, and modulate the main signaling pathways activated in PAH.
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METHODS

Animal experiments were performed according to the Portuguese law on animal
welfare and conform to the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH Publication No. 85-23,
Revised 1996). The ethical committee of the University of Porto, Portugal approved
all studies.

Male Wistar rats (n=110; age=4 weeks; Charles River Laboratories, Barcelona) were
housed in groups of 5 rats/cage, in a controlled environment at a room temperature of
22°C, with inverted 12:12-h light-dark cycle, in order to match animals handling and
training with their most active period, and had free access to food and water. Animals
were randomly submitted to four different experimental protocols (supplementary
data; Figure 1S): 1) sedentary injected with MCT or vehicle (SED+MCT, n=25 and
SED+Control, n=10; respectively), i1) 4 weeks-exercise training before MCT or
vehicle injection (EXbefore+MCT, n=15 and EXbefore+Control, n=10), iii) 4 weeks-
exercise training after MCT or vehicle injection (EXafter+MCT, n=15 and
EXafter+Control, n=10) and iv) 2 weeks-exercise training after 2 weeks of MCT or
vehicle injection (EXtreat+MCT, n=15 and EXtreat+Control, n=10), a time point
where significant elevation of RV pressure is already present.”” Exercise groups were
designed to study the effects of pre-conditioning (EXbefore+MCT), training after the
beginning of PAH (EXafter+MCT) and training after PAH establishment
(EXtreat+MCT). All animals received one subcutaneous injection of MCT (60 mg/kg,
Sigma, Barcelona, Spain) or an equal volume of vehicle (1 mL/kg of saline) at the 8"
week of living. Regarding the exercise training protocol, after 1 week of habituation,
animals exercised for 60 minutes/session, with a running speed of 30 meters/minute,

no grade, 5 days/week for 4 weeks (estimated work rate of 70% maximum oxygen
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consumption).” In the last week of training it was necessary to decrease the intensity
from 30 m/min to 25 m/min in EXafter+MCT and EXtreat+MCT in order to allow all
animals to perform 60 min of running. Ten animals from SED+MCT, four animals
from EXbefore+MCT, three animals from EXafter+MCT and three animals from
EXtreat+MCT died during the last week of protocol.

For the survival studies, additional 80 animals were randomly divided as follows:
SED+Control (n=5), SED+MCT (n=15), EXbefore+Control (n=5), EXbefore+MCT
(n=15), EXafter+Control (n=5), EXafter+MCT (n=15), EXtreat+Control (n=5), and
EXtreat+MCT (n=15), and submitted to their respective protocols. After that, their
movement was confined to the cages’ area from day 28 until day 42 after MCT

injection, which was the study endpoint.

Measurements

At day 28-29 after MCT or vehicle administration, animals were prepared for bi-
ventricular hemodynamic evaluation with pressure-volume catheters. At the end of
the experiments, samples from RV were collected and stored accordingly for
microscopy (cross sectional area and fibrosis measurements), RT-PCR (GAPDH, ET-
1, TNF-alpha, VEGF-A and IL-10) and protein analysis (SERCA2a, myosin heavy
chain isoforms, BN-PAGE analysis of oxidative phosphorylation system organization
and in-gel activity of complex V, ATPsynthase beta, and 3-nitrotyrosine). For an

expanded Material and Methods section, please see the online-only Data Supplement.
Statistical Analysis
All data are presented as mean+SEM. Kolmogorov-Smirnov test was performed to

check the normality of the data. Kruskal-Wallis test followed by Dunns test was used
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for non-normal data while two-way ANOVA with a Students-Newman Keuls post-
hoc test was used for normally distributed data. All statistical analysis was performed
with Graph Pad Prism software (version 5.0). Kaplan—Meier survival analysis and the
Gehan—Breslow test was performed, and pairwise comparisons were made using the

Holm—Sidak method. Results were considered significantly different when P<0.05.
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RESULTS

Effects of exercise training on morphometric characteristics

Table 1 summarizes all the analyzed parameters. Body weight loss was observed in
SED+MCT (-20%) and EXtreat+MCT (-13%) (P<0.001). Exercise training prevented
body weight loss in EXbefore+MCT and EXafter+MCT groups. MCT induced RV
hypertrophy in sedentary animals (P<0.001 vs. SED+Cont). Exercise training partially
reverted this effect in all trained groups that received MCT injection
(EXbefore+MCT, EXafter+MCT and EXtreat+MCT) as shown by the RV/BW and
RV/LV ratio (P<0.01 vs. SED+MCT). MCT administration induced hypertrophy at
the level of the cardiomyocytes in all MCT-treated groups (P<0.001 vs. respective
control group). EXbefore+MCT exhibited significantly less hypertrophy when
compared to all other MCT-treated groups (P<0.001). EXafter+MCT and
EXtreat+MCT presented cardiomyocyte hypertrophy similar to SED+MCT.

MCT treatment did not induce any changes in LV morphometric parameters. There
were no differences in LV parameters among control groups.

Lung weight was significantly increased in all MCT-treated groups (P<0.001). Lung
to body weight ratio was attenuated in EXbefore+MCT and EXafter+MCT groups

(P<0.05 vs. SED+MCT).

Exercise training averts RV diastolic dysfunction in MCT-treated rats

Table 2 summarizes the results from bi-ventricular hemodynamic evaluation. RVP,
increased in SED+MCT (+99%), EXafter+MCT (+71%) and EXtreat+MCT (+73%)
groups (P<0.001 vs. respective control group). In EXbefore+MCT, exercise

preconditioning prevented RVP, . increase. Heart rate was reduced in SED+MCT

(P<0.001 vs. SED+Control) and normalized in all MCT-trained groups. Figure 1
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shows typical RV PV-loops representative from all groups during IVC occlusion from
which ESPVR, EDPVR and Ea were obtained. Right ventricle Fa increased in
SED+MCT group as compared with SED+Cont group (Figure 1-A). Exercise training
induced a decrease in Ea but significance was obtained only in EXafter+MCT as
compared with SED-MCT group (P<0.05). ESPVR significantly increased in SED-
MCT and EXbefore+MCT groups in comparison to their respective controls (P<0.05),
whereas in EXafter+MCT and EXtreat+MCT there was a smaller increase in ESPVR
(P<0.05 vs. SED+MCT).

Diastolic function was markedly impaired in SED+MCT group, namely there was an
increase in end-diastolic pressure and a longer RV time constant tau (P<0.01 vs. all
other groups). Exercise training normalized both end-diastolic pressure and tau in all
three MCT-trained groups. Peak rate of RV pressure fall was increased in all MCT-
treated groups but significance was only present in EXbefore+MCT (P<0.01) and
EXafter+MCT (P<0.05) groups in relation to their respective control pairs. Right
ventricle EDPVR was increased in SED+MCT, as compared to SED+Control
(P<0.001) and to all MCT-trained groups (P<0.001). It was also decreased in all
Control-trained groups (P<0.05 vs. SED+Control).

Regarding the LV, SED+MCT presented a significant decrease in P, and increase in
tau (P<0.01 vs. SED+Control). Exercise training normalized these alterations in all

MCT-trained groups.

Exercise training prevents pathological remodeling in MCT-treated rats
Right ventricular SERCA2a protein expression (Figure 2-A) was significantly
reduced in SED-MCT (P<0.001 vs. all groups), whereas normal values were observed

in all MCT-trained groups.
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A significant increase in the beta/alpha-MHC isoform ratio from RV was found in
SED+MCT groups (P<0.05 vs. respective control group) (Figure 2-B). All the MCT-
trained groups predominantly expressed more alpha-MHC (lower ratio beta/alpha-
MHC) and a significant difference was present in both EXbefore+MCT and
EXafter+MCT groups (P<0.05 vs. SED+MCT; P<0.01 vs. respective control groups).
Exercise training induced an increase in beta/alpha-MHC isoform ratio in control
groups and significance was achieved in EXbefore+Control and EXafter+Control
(P<0.01 vs. SED+Control).

ET-1 gene expression was quantified in the RV (Figure 2-C) and LV (supplementary
data; Figure 2S). A significant increase of ET-1 mRNA was observed in both
ventricles from SED+MCT (P<0.001 vs. SED+Control), while in all MCT-trained
groups its expression was significantly down-regulated (P<0.05 vs. SED+MCT).
Significant down-regulation of VEGF mRNA was observed in SED+MCT in
comparison to all groups (P<0.05). Exercise training completely prevented or reverted

any alteration in VEGF mRNA on MCT-trained groups (Figure 2-D).

Exercise training prevents RV fibrosis and RV myocardial inflammation in MCT-
treated rats

Significant amounts of collagen were detected in SED+MCT in comparison to all
control and other MCT-treated groups (P<0.001). Exercise training normalized
collagen deposition in all MCT-trained groups. Results and representative images are
shown in Figure 3-A and B.

An elevated inflammatory state was observed in SED+MCT group as evidenced by

the increased TNF-alpha/IL-10 mRNA ratio (P<0.05 vs. all groups). Exercise training
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improved the anti-inflammatory state in all MCT-trained groups (P<0.05 vs.

SED+MCT).

Exercise training prevents RV mitochondrial oxidative phosphorylation and
oxidative damage in MCT-treated rats

The BN-PAGE densitometric analysis revealed no significant differences in the
oxidative phosphorylation complexes organization, as can be depicted from the
representative density traces for complexes’ bands (Figure 4-A). Complex V in-gel
activity (Figure 4-B) was significantly impaired in SED+MCT (P<0.05 vs.
SED+Control). Exercise training completely rescued the RV ability to aerobically
produce ATP in the MCT-trained groups (P<0.05 vs. SED+MCT). Western blot
analysis of ATP synthase subunit beta was performed in order to validate the protein
expression profile observed and no differences were detected (Figure 4-C).

In order to investigate if the decreased mitochondrial complex V activity could be
related with oxidative damage, membranes containing mitochondrial complexes from
SED+Cont and MCT-treated animals separated by BN-PAGE were probed for 3-
nitrotyrosine (Figure 4-D). Significant levels of mitochondrial membrane protein
nitration were found only in SED-MCT, with the Complex V as the main target of
this posttranslational modification (P<0.001 vs. SED+Control). Exercise training

prevented nitration in all MCT-trained groups (P<0.001 vs. SED+MCT).

Exercise training improved survival rate in MCT-treated rats
Survival rate 42 days after MCT injection was 73% in EXafter+MCT group, 25% in
EXbefore+MCT group, 16% in EXtreat+MCT group and 13% in SED+MCT group.

A significant improvement on survival curves was observed in all MCT-trained
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animals (P<0.05). Mortality rate was null in Control groups. Results are illustrated in

Figure 5.
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DISCUSSION

The present study demonstrates that exercise training at different time-points
exerts a positive impact in the RV response to chronic pressure overload, protecting
from cardiac dysfunction and improving survival in an experimental model of PAH.
This suggests that exercise can act as an upstream modulator of several pathological
pathways activated in the RV during PAH. The benefits of exercise training may be
associated with the prevention of calcium handling disturbances, alpha to beta-MHC
shift, decreased neurohumoral activation, collagen deposition and inflammation and
preserved oxidative phosphorylation through the reduction of mitochondrial oxidative
damage.

The recent recognition that exercise training can be safely performed by PAH

patients,””*'

justifies the urgent need to investigate the impact of exercise training on
the overloaded RV. In the present study, we demonstrate that exercise training at
different time points of MCT-induced PAH improves survival rate and ameliorates
RV function. In animals submitted to preconditioning (EXbefore+MCT) the RV was
protected from significant afterload elevations as well as from cardiac hypertrophy,
highlighting that cardioprotection can be sustained for several weeks after the
cessation of exercise training. Those animals that were trained during the
development (EXafter+MCT) and after the establishment of RV pressure overload
(EXtreat+MCT) experienced levels of pressure overload and cardiomyocyte
hypertrophy comparable to SED+MCT, nevertheless their RV diastolic function was
completely preserved. These results contrast with those published by Handoko et al.,”*
who reported worsening of the RV cardiac function by exercise training in rats with

PAH induced by the same dosage of MCT that we used. It is known that

improvements in cardiovascular function induced by exercise are intensity-dependent
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and require higher intensities of training for maximal benefit.”** In the present work,
animals were submitted to a longer and more intense exercise-training program,
which may explain the beneficial effects of exercise obtained in our study.

Right ventricular function is widely accepted as the main prognostic factor in
PAH." The signaling pathways activated in the RV during the progression from
hypertrophy to failure secondary to PAH*'"'*?" show some similarities to those
activated in LV failure.'” ** ET-1 activation is an important player in PAH
pathophysiology and its blockade is part of the therapeutic options currently used in
PAH.* ®7'" We found that ET-1 mRNA levels were increased in the RV of
SED+MCT group, but they were normalized in all MCT-trained groups. Exercise-
induced inhibition of ET-1 might explain the improvement of RV function, as well as,
the preservation of LV function.® Deregulation of the extracellular matrix with
collagen deposition and fibrosis is another hallmark of RV dysfunction.” The
SED+MCT animals presented increased levels of RV fibrosis that was accompanied
by a pro-inflammatory state, with an imbalance between TNF-alpha and IL-10,”**
favoring the formation of cardiac fibrosis.” Exercise training completely prevented
the development of RV fibrosis and promoted an anti-inflammatory status (decreased
TNF-alpha/IL10 ratio). The switch from alpha- to beta-MHC is widely used as an
indicator of maladaptive cardiac remodeling. In accordance with previous reports,’ we
found an increase in the slower beta-isoform in the RV of SED+MCT. In contrast, all
MCT-trained groups expressed more alpha-MHC isoform, which is in line with the
beneficial effects of exercise training previously reported in LV failure.’* ¥
Paradoxically, in our control trained animals there was also an up-regulation of the

beta-MHC. Our observation corroborates previous findings from Hwang and

coworkers who also described increased beta-MHC in the RV and LV of healthy rats
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submitted to treadmill running.”® There are some evidences that an increase in
beta/alpha-MHC ratio has no deleterious impact on cardiac structure or contractile
function under basal conditions or in response to exercise.””*® In sedentary animals
treated with MCT there was also a decrease in SERCAZ2a, another important feature
of heart failure.”*’ In opposition to SED+MCT group, we found normal SERCA2a
protein levels in all MCT-trained animals, which are in line with their preserved
relaxation rate. Exercise training was suggested to protect cardiac function in different
models of cardiac failure by enhancing cardiac capillarization.””'** We evaluated
mRNA expression of VEGF, which was shown to reflect cardiac capillary density,"” '
and found that exercise training prevented its down-regulation. Moreover, a similar
pattern of increase in cardiac hypertrophy and VEGF mRNA was observed in all
trained groups, which is congruent with the concept that physiological cardiac growth
is associated with enhanced angiogenesis.**

Impaired oxidative phosphorylation can affect cardiac function by
compromising the energetic supply of ATP to the cardiomyocytes.” Mitochondrial
complex V activity revealed decreased mitochondrial energy-producing ability in the
RV from MCT-treated sedentary animals. Our observation corroborates previous
findings reporting low ATP levels in the RV of MCT-treated rats.” Limited
availability of ATP can interfere with the contractile apparatus and calcium kinetics*
and negatively affect diastolic function. Importantly, exercise training rescued
mitochondrial oxidative phosphorylation capacity in all MCT-trained groups. As
major sources of reactive oxygen and nitrogen species, mitochondria themselves, and
particularly oxidative phosphorylation complexes, are highly susceptible to functional
impairment due to oxidative and nitrative damage.*” We found increased levels of 3-

nitrotyrosine in the mitochondrial complex V from SED-MCT animals, which may
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account for the decreased oxidative phosphorylation, as previously demonstrated in
neuronal mitochondria.** Importantly, exercise training prevented protein nitration in
all MCT-trained groups, which may reflect its buffering capacity due to improved
anti-oxidant mechanisms. This is corroborated by the results from Redout et al'® who
showed prevention of protein nitration in the RV of MCT-treated rats with an anti-
oxidant mimetic.

Our data strengths the hypothesis that RV dysfunction is not entirely

dependent of cardiac overload.” *'

Exercise training seems to provides a
cardioprotective phenotype that allows the RV to work under overloading conditions
with better tolerance. Similar observations were previously reported in the LV, where
exercise training prevented cardiac dysfunction in different animal models of chronic
pressure overload, independently of any hypotensive effect.” " '” Thus, therapeutic

approaches aimed to specifically improve the RV performance in the presence of

persistent overload, as occurs in PAH, may potentially be beneficial.

CONCLUSIONS

The findings from the present study indicate that exercise preconditioning, as well as
exercise performed during or after the establishment of RV chronic pressure overload
secondary to MCT-induced PAH averts RV dysfunction and improves survival. The
putative mechanism for the cardioprotection at the RV level afforded by exercise
training may include prevention of calcium handling disturbances, alpha to beta-MHC
shift, decreased neurohumoral activation, collagen deposition and inflammation, and
preserved mitochondrial function. Interestingly, the majority of these beneficial

effects were independent from afterload levels. Altogether, these data highlight that
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exercise training can be a new modulator of RV function and can represent an

important adjunctive therapeutic option in the management of PAH patients.
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FIGURE LEGENDS

FIGURE 1: Representative examples of RV PV-loops obtained during inferior vena
cava (IVC) occlusion (A) and graphic representation of derived parameters (B). Only
animals showing volume signal in a range of 5-10 RVU* were considered for this
analysis (n=5 for SED+Control, n=6 for EXbefore+Control, n=5 for
EXafter+Control, n=5 for EXtreat+Control, n=6 for SED+MCT, n=9 for
EXbefore+MCT, n=8 for EXafter+MCT and n=6 for EXtreat+MCT). ESPVR: end-
systolic pressure volume relation; Fa: arterial elastance; EDPVR: end-diastolic
pressure-volume relation. Error bars are mean+SEM. *P<0.05 vs. SED+Control,

TP<0.001 vs. respective control group and & P<0.05 vs. SED+MCT.

FIGURE 2: Effects of exercise training markers of RV remodeling: A) SERCA2a
protein expression; B) alpha/beta-MHC isoform ratio; C) ET-1 mRNA; D) VEGF
mRNA. Error bars are mean+SEM (n=8, n=5, n=8, n=7 animals per group for
SERCA2a, cross sectional analysis, MHC isoform and mRNA quantification,

respectively). TP<0.05 vs. respective control group, F P<0.05 vs. SED+MCT.

FIGURE 3. Effects of exercise training on RV fibrosis (A and B) and TNF-alpha/IL-
10 mRNA ratio (C). Error bars are mean+SEM (n=5 and n=7 animals per group for

fibrosis and mRNA quantification, respectively). TP<0.05 vs. respective control group

and I P<0.05 vs. SED+MCT.

FIGURE 4: Effects of exercise training on mitochondrial oxidative phosphorylation
and oxidative stress: A) RV mitochondrial BN-PAGE profile of the experimental

groups; B) Representative images of histochemical staining, with semi-quantitative
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analysis of in-gel activity of complex V; C) Validation of the protein expression
profile of ATP synthase subunit beta by Western blotting; D) Formation of 3-
nitrotyrosine in mitochondrial complex V. Error bars are mean+SEM (n=6; 3 pools of
2 different animals, assayed in duplicate). *P<0.001 vs. SED+Control, 1P<0.05 vs.

respective control group and i+ P<0.05 vs. SED+MCT.

FIGURE 5: Impact of exercise training on survival: exercise training delayed
mortality. All rats from EXbefore+Control, EXafter+Control and EXtreat+Control
survived but were omitted here to improve the clarity of the graphic. MCT:
monocrotaline pyrrole. TP<0.001 vs. respective control group and I P<0.05 vs.

SED+MCT.
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FIGURE 3
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SUPPLEMENTAL METHODS

Hemodynamic evaluation

Twenty four hours after ending their respective protocols, rats were anaesthetized by
inhalation with a mixture of 4% sevoflurane with oxygen, intubated for mechanical
ventilation (respiratory frequency 100 min' and weight adjusted tidal volume;
Harvard Small Animal Ventilator- Model 683) and placed over a heating pad (37°C).
The right jugular vein was cannulated for fluid administration (prewarmed 0.9% NaCl
solution) to compensate for perioperative fluid losses. A median sternotomy was
performed to expose the heart and the pericardium was widely opened. Two 1.9F
microtip pressure—volume conductance catheters (FTS-1912B-8018, Scisense) were
inserted by apical puncture on the RV and LV cavity, along the ventricular long axis.
The catheters were connected to MVP-300 conductance system through interface
cable (PCU-2000 MPVS, FC-MR-4, Scisense), coupled to PowerLLab16/30 converter
(AD Instruments) and a personal computer for data acquisitions. After complete
instrumentation, the animal preparation was allowed to stabilize for 15 min.
Hemodynamic recordings were made with respiration suspended at the end of
expiration under steady-state conditions or during preload reductions (inferior vena
cava occlusion). Parameters from conductance catheter were recorded at a sampling
rate of 1,000 Hz, in order to accurately capture all of the features of the pressure—
volume waveforms produced by the fast-beating rat hearts. Data were stored and

analyzed with Millar conductance data acquisition and analysis software (PVAN3.5).

Measured parameters
The following parameters were calculated: heart rate (HR), maximum pressure (Ppax),

minimum pressure (Pnin), end-systolic pressure (ESP), end-diastolic pressure (EDP),
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peak rate of pressure rise (dP/dtm.x), peak rate of pressure fall (dP/dtni,) and time
constant of ventricular pressure decay (Tau). RV end-systolic pressure—volume
relation (ESPVR), arterial elastance (Fa) and end-diastolic pressure—volume relation
(EDPVR) were determined from pressure—volume loops recorded during transient
occlusion of the inferior vena cava by external compression of the vessel. Because the
parallel conductance volume varied widely by the amount and speed of the saline
injection, we opted to use relative volume units (RVU) instead of microliters, which
has the disadvantage of failing to give precise estimation of volume intercepts of P-V
relations but it allows reasonable ESPVR, EFa and EDPVR assessment once the slope

of these indexes are independent of units calibration.'

Tissue Preparation

Once hemodynamic data collection was completed, animals were euthanized by
exsanguination and the heart, lung and right gastrocnemius muscle were excised and
weighed. Under binocular magnification (x3.5), the LV+septum was dissected from
the RV and weighed separately. Heart weight was normalized to body weight
(BW/BW). RV was normalized to BW (RV/BW) and LV (RV/LV). Samples from
RV were fixed and prepared for light microscopy (LM) following routine procedures

or frozen with liquid nitrogen for mRNA or protein studies.

Microscopic evaluation

RV samples extracted from the basal, intermediate, and apical cardiac regions of each
animal were fixed, paraffin-embedded, sectioned and mounted on silane-coated
slides. RV blocks were embedded in the upright position in order to distinguish the

endocardium, midwall, and the epicardium of the RV free wall in cross sections. For
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cardiomyocytes surface area (CSA) measurements deparaffinised sections were
stained for haematoxylin-eosin, photographed and analyzed as previously explained.’
In order to determine the amount of cardiac fibrosis, RV sections were stained with

Picrosirius red and quantified as described before.’

Right Ventricular Mitochondrial isolation

Right ventricle mitochondria isolation was performed using the conventional methods
of differential centrifugation, as previously described.* All procedures were
performed at 0-4°C. Briefly, after excised the samples from right ventricles (4
independent experiments; pools of n=2 different animals) were immediately minced
in an ice-cold isolation medium containing 250 mM sucrose, 0.5 mM EGTA, 10 mM
HEPES-KOH (pH 7.4), and 0.1% defatted BSA (catalog. no A6003, Sigma). The
minced blood-free tissue was resuspended in isolation medium containing protease
subtilopeptidase A type VIII (catalog no. P5380, Sigma; 1 mg/g tissue) and
homogenized with tightly fitted Potter-Elvehjen homogenizer and Teflon pestle. The
suspension was incubated for 1 minute (4°C) and rehomogenized. A 0.5 mL aliquot
of cardiac muscle homogenate was reserved for Western blotting analysis of specific
protein targets and the remaining homogenate was centrifuged at 14,500 g during 10
minutes. The supernatant fluid was decanted, and the pellet, essentially devoid of
protease, was gently resuspended in isolation medium. The suspension was
centrifuged at 750 g for 10 minutes, and the resulting supernatant was centrifuged at
12,000 g for 10 minutes. The pellet was resuspended and repelleted at 12,000 g for 10
minutes. The final pellet, containing the mitochondrial fraction, was gently
resuspended in a washing medium containing 250 mM sucrose, 10 mM HEPES-KOH,

pH 7.4. Mitochondrial protein concentration was spectrophotometrically estimated

120



with the colorimetric method “RC DC protein assay” (Bio-Rad) using bovine serum

albumin (BSA) as standard.

Blue-native PAGE separation of mitochondria membrane complexes and in-gel
activity of respiratory chain complex V

BN-PAGE was performed using the method described by Schagger and von Jagow °.
Briefly, mitochondrial fractions (200 g of protein) from each experimental group
were pelleted by centrifugation at 20,000g for 10 minutes and then resuspended in
solubilization buffer (50 mM NaCl, 50 mM Imidazole, 2 mM e-amino n-caproic acid,
I mM EDTA pH 7.0) with 1 % (w/v) digitonin. After 10 minutes on ice, insoluble
material was removed by centrifugation at 20,000g for 30 minutes at 4°C. Soluble
components were combined with 0.5 % (w/v) Coomassie Blue G250, 50 mM e-amino
n-caproic acid, 4 % (w/v) glycerol and separated on a 4-13 % gradient acrylamide
gradient gel with 3.5 % sample gel on top. Anode buffer contained 25 mM Imidazole
pH 7.0. Cathode buffer (50 mM tricine and 7.5 mM Imidazole pH 7.0) containing
0.02 % (w/v) Coomassie Blue G250 was used during 1 hour at 70 V, the time needed
for the dye front reach approximately one-third of the gel. Cathode buffer was then
replaced with one containing only 0.002 % (w/v) Coomassie Blue G250 and the
native complexes were separated at 200 V for 4 h at 4 °C. A native protein standard
HMW-native markers (GE Healthcare, Buckinghamshire, UK) was used. The gels
were stained with Coomassie Colloidal for protein visualization or incubated at 37 °C
with 35 mM Tris, 270 mM glycine buffer, pH 8.3, supplemented with 14 mM MgSO,,
0.2 % (w/v) Pb(NO,),, and 8 mM ATP for evaluation of the ATP hydrolysis activity
of complex V °. Lead phosphate precipitation that is proportional to the enzymatic
ATP hydrolysis activity, was stopped by 50 % (v/v) methanol (30 min), and the gels

were then transferred to water. Gels were scanned in Molecular Imager Gel Doc XR+
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System (Bio-Rad, Hercules, CA, USA). Band detection and analysis were performed
using QuantityOne Imaging software (v4.6.3, Bio-Rad).

Western blotting analysis

Equivalent amounts of total protein from each group were electrophoresed on a 12.5
% SDS-PAGE as described by Laemmli.” Gels containing total proteins or
mitochondrial proteins (separated by 2-D BN-PAGE) were blotted onto a
nitrocellulose membrane (Whatman®, Protan®) and nonspecific binding was blocked
with 5 % (w/v) dry non-fat milk in TBS-T (100 mM Tris, 1.5 mM NacCl, pH 8.0 and
0.5 % Tween 20). Membranes were then incubated with primary antibody solution
(1:1000 dilution; GAPDH, Santa Cruz, sc-47724; ATP synthase subunit beta, Abcam,
ab-14730; mouse anti-SERCA2 ATPase, Abcam, ab2861; 3-nitrotyrosine, Chemicon,
Clone 2A8.2). After 2 hours incubation, the membrane was washed with TBS-T and
incubated with anti-mouse or anti-rabbit IgG peroxidase secondary antibody (1:1000
dilution, Amersham Pharmacia Biotech). Immunoreactive bands were detected with
enhanced chemiluminescence reagents (ECL, Amersham Pharmacia Biotech)
according to the manufacturer's procedure and images were recorded using X-ray
films (Kodak Biomax light Film, Sigma). The films and the gels were scanned in
Molecular Imager Gel Doc XR+ System (Bio-Rad) and analyzed with QuantityOne
software version 4.6.3 (Bio-Rad, Hercules, CA). Equal loading of membranes was

confirmed by staining the membranes with Ponceau S or GAPDH immunoblotting.

MHC isoform determination
Right ventricle samples were weighed and transferred to a glass homogenizer. A 1:19
ratio of 100 mM phosphate buffer, pH 7.4, containing 0.02% bovine serum albumin

was added. Tissue sections were thoroughly homogenized with tightly fitted Potter-
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Elvehjen homogenizer and Teflon pestle. Total protein concentration was
spectrophotometrically assayed with the colorimetric method “RC DC protein assay”
(Bio-Rad) using bovine serum albumin (BSA) as standard. Alpha- and beta-isoforms
of cardiac myosin heavy chain were separated by gel electrophoresis following the
procedure described by Talmadge and Roy.” The amount of protein run on the gel was
1 mg per lane. To avoid inter-gel variation, one sample from each of the groups
studied was applied in the same gel. The stacking gel consisted of 30% glycerol and 4
% acrylamide: N,N’-methylene-bis-acrylamide in the ratio of 50:1, 70 mM Tris (pH
6.7),4 mM EDTA, and 0.4% sodium dodecyl sulfate (SDS). The separating gels were
composed of 30% glycerol, 8% acrylamide-bis (50:1), 0.2 M Tris (pH 8.8), 0.1 M
glycine, and 0.4% SDS. Polymerization was initiated with 0.05% N,N,N’N’-
tetramethylethylenediamine and 0.1% ammonium persulfate. The gels were run in a
Mini-Protean system (Bio-Rad) at 4°C. The running conditions were 70V (constant
voltage) for 30 hours. The gels were stained with Coomassie Colloidal, scanned in
Molecular Imager Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA) and optical
density analysis of MHC bands was performed using QuantityOne Imaging software

(v4.6.3, Bio-Rad).

Relative quantification of mRNA

Two-step real-time RT-PCR was performed as previously described.® Briefly, after
total mRNA extraction (no. 74124; Qiagen), standard curves were obtained for each
gene correlating (R = 0.98) the mRNA quantities in graded dilutions of a rat cardiac
tissue sample with the respective threshold cycles (second derivative maximum
method). Equal amounts of mRNA from every sample underwent three separate two-

step realtime RT-PCR experiments for each gene, using SYBR green as marker (no.
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204143; Qiagen). GAPDH was used as internal control and results are relative to the
mean obtained for the SED+Control group and normalized for GAPDH (fold
increase). All the analysis was performed in duplicates. Specific PCR primer pairs for

the studied genes are presented in Table S1.
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SUPPLEMENTAL TABLES

Table S1: Primers used in mRNA quantification by real-time RT-PCR

Gene Sequence 5’3’
fw: TGG CCT TCC GTG TTC CTA CCC
GAPDH
rev: CCG CCT GCT TCA CCA CCT TCT
fw: CGG GGC TCT GTA GTC AAT GTG
ET-1
rev: CCA TGC AGA AAG GCG TAA AAG
fw: TGG GCT ACG GGC TTG TCA CTC
TNF-alpha
rev: GGG GGC CACCACGCTCTITC
fw: GTA CCT CCA CCA TGC CAA GT
VEGF-A
rev: GCA TTA GGG GCA CAC AGG AC
fw: GAA GGA CCA GCT GGA CAA CAT
IL-10

rev: CCT GGG GCA TCA CTT CTA CC

GAPDH: glyceraldehyde 3-phosphate dehydrogenase; ET-1: endothelin-
I; TNF-alpha; tumor necrosis factor-alpha; VEGF-A: vascular
endothelial growth factor-A; IL-10: interleukin-10; fw: forward; rev:

réverse.
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SUPPLEMENTAL FIGURES AND FIGURE LEGENDS

Age (weeks)

L
L 2

Vehicle or MCT (60 mg/kg, sc)

v
SED 12 |3|a|s|e|7|8]9]10]11]12]|HE
Vehicle or MCT (60 mg/keg, sc) .
v
EXbefore 1| 2|3|4a4|5|6|7|8| 9 |10]|11]12]HE
Vehicle or MCT (60 mg/kg, sc)
v
EXafter 1| 23| 4|5 |6 |7 |8|9|10]|11]22 HE
Vehicle or MCT (60 mg/kg, sc) .
y |
EXtreat 1|2 /3|a|5|6|7]| 8|9 ]|10f11]12]HE

Figure S1: Illustration of the study design. The effects of exercise training were
assessed at different time points of the disease. Animals were randomly divided as
follows: 1) sedentary animals injected with MCT or vehicle (SED+Control and
SED+MCT, respectively), ii) 4 weeks-exercise training before MCT or vehicle
injection (EXbefore+MCT and EXbefore+Control, respectively), iii) 4 weeks-exercise
training after MCT or vehicle injection (EXafter+MCT and EXafter+Control,
respectively) and iv) 2 weeks-exercise training after 2 weeks of MCT or vehicle
injection (EXtreat+MCT and EXtreat+Control, respectively). The experimental
design was programmed in order that all animals could receive one subcutaneous
injection of MCT or vehicle solution at the age of 8 weeks. White square represents
movement confined to the cage’s dimensions while grey squares represent the period
of exercise training. After ending their respective protocols, all animals were

submitted to hemodynamic evaluation (H.E).
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Figure S2: Effects of exercise training in LV ET-1 mRNA. Error bars are

mean+SEM (n=7 animals per group). P<0.001 vs. respective control group and i

P<0.01 vs. SED+MCT.
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4. GENERAL DISCUSSION

In the present work, it was hypothesized that enhancing the ability of the heart
to support pressure overload would prevent cardiac dysfunction and failure, and
decrease the magnitude of activation of signaling pathways associated with cardiac
maladaptation. Our data clearly shows that moderate exercise training induces a
cardioprotective phenotype that improves the cardiac response to acute and chronic
cardiac pressure overload. Exercise prevented cardiac dysfunction and attenuated the
activation of several mediators related with the development of maladaptation.
Moreover, intermittent chronic overload induced by beta-adrenergic stimulation with
dobutamine promoted several cardiac adaptations that resembled those induced by
exercise training and conferred protection to acute pressure overload.

In the first and second studies, we show that two hours of sustained
constriction of the descending thoracic aorta results in severe functional impairment
of the heart of sedentary animals. Our observation corroborates previous conclusions
from both the RV (44, 86, 221) and LV (147, 179), that the normal healthy heart has a
limited ability to tolerate acute workload demands. On its turn, exercised animals
tolerated the two hours of pressure overload, without notorious deterioration of
cardiac function, which is conform to the cardioprotective effects of exercise training
against other cardiac insults (25, 38, 47, 49, 69-71, 105, 109, 150, 270). Reduced
cardiac performance of sedentary animals was associated with disturbed calcium
dP/dt

homeostasis (suggested by altered dP/dt and increased mitochondrial

‘min® ‘max ?

swelling), increased apoptosis, NF-kB activation, and oxidative damage (especially of
mitochondrial proteins), all of which have been implicated in the process of
maladaptive remodeling (39, 68, 101, 125, 126, 158, 199, 243, 246, 269, 274).

Morphological analysis revealed greater inter- and intra-group variability in terms of
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cardiomyocytes’ injury threshold to the impact of the acute pressure overload. In the
same microscopic field, it was possible to observe that some cardiomyocytes
exhibited more damage (e.g. intracellular edema, mitochondrial swelling and
apoptosis), and reactivity to the overload (e.g. increased Nf-KB expression), than
others. These observations are in accordance with the notion that cardiomyocytes are
characterized by structural and functional heterogeneity, which becomes more
obvious when challenged by demanding situations (170, 194, 204, 223), where the
most susceptible are injured, die and eventually are replaced (11, 62, 121, 122). Of
note, although submitted to the same magnitude of overload, these alterations were
scarcer in the heart from exercised animals, supporting the notion that exercise
training provides chronic cardiac adaptations that translate into improved homeostasis
(increased tolerance) and, consequently, less activation of signaling pathways
implicated in the maladaptive remodeling of the heart. Exercise training induced
cardiomyocyte growth (and eventually hyperplasia), which, according to the Laplace
law of the heart, result in a relatively smaller increase in wall tension per unit volume

of myocardium (5). Preserved dP/dt,,;, (study I and II) after acute pressure overload

and increased SERCA?2a expression (study II), indirectly suggest improved calcium
handling (51, 177) and thus, lower cytosolic calcium accumulation, explaining the
reduced mitochondrial swelling and lower levels of apoptosis found in study I (71, 72,
238). Also, exercise induced an increase in phospho-Akt, which is known to modulate
SERCA2a activity and LTCC stability, thus improving calcium kinetic and
cardiomyocyte contractility (35, 76, 129, 176). Reduced apoptosis, as well as lower
levels of total oxidative damage may be related with increased anti-oxidant defenses,

namely MnSOD (71, 253). The lower damage to mitochondrial proteins (study I)

together with increased mitochondrial ATP production (study II) in exercised animals
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suggest increased mitochondrial functionality (28, 33, 80, 108, 159, 202, 250), thus
contributing to the higher cardiac performance during pressure overload. A schematic

representation of these findings is presented in Figure 2 and 3.
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Figure 2- Exercise training increases tolerance to left ventricular acute pressure overload.
Exercise training induced several chronic adaptations that translated into an enhanced cardiac
performance against pressure overload and its deleterious effects such as structural derangements and
biochemical alterations. Our main findings are reported in the yellow rectangles. Detailed information
is provided in the text. Ca* calcium; K*: potassium; Na*: sodium; LTCC: L-type calcium channels;
RyR: ryanodine receptor; SERCA: sarcoplasmic reticulum calcium-ATPase; PLN: phospholamban;
RONS: reactive oxygen and nitrogen species; MnSOD: manganese superoxide dismutase; Nf-KB:
nuclear factor kappa B; Cyt C: cytochrome C.

In the second study, we also evaluated whether the development of a
cardioprotective phenotype is uniquely provided by exercise training, or if it could be
induced by other stimuli. We hypothesized that using a stimulus of different nature
that mimicked the duration and magnitude of the overload induced by exercise
training could result in an adaptive phenotype. To test our hypothesis, we used

dobutamine, a beta 1- and 2-adrenoreceptor agonist in the concentration of 2 mg/kg
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(s.c.). By performing a series of acute hemodynamic studies, we found that this
dosage reasonably mimics the duration and magnitude of an acute cardiac overload
imposed by the exercise training protocol (~40% increase in heart rate and ~15%
increase in peak systolic pressure) (175). This strategy allowed us to have a certain
control over the magnitude and duration of the hemodynamic demand that was
imposed. Animals chronically treated with 2 mg/kg of dobutamine (5 days/week
during 8 weeks) developed an overall cardiac phenotype that resembled several
features of adaptive remodeling. Namely, they developed hypertrophy, with normal
levels of osteopontin-1, collagen and calcineurin, which are typically elevated in
maladaptive remodeling (16, 176, 271). Also, similar MHC isoforms composition as
well as a similar increase in phospho-Akt/mTOR, total SERCA2a and oxidative
phosphorylation was observed in both exercised and dobutamine-treated animals. In
order to test whether the cardiac phenotype induced by dobutamine was
cardioprotective, we submitted dobutamine-treated animals to sustained acute
pressure overload for two hours. Remarkably, both exercised and dobutamine-treated
animals exhibited a similar performance in response to the overload, preventing
cardiac dysfunction. Although our data does not allow to make any cause-effect
assumption, it is possible that the above-mentioned adaptations (cardiomyocyte
hypertrophy, increased SERCAZ2a, phospho-Akt/mTOR and mitochondrial activity)
may partially explain the increased tolerance to pressure overload (Figure 3). These
data suggest that the cardiac overload induced by chronic intermittent beta-adrenergic
stimulation resulted in an adaptive phenotype, favoring the notion that the duration of
overload may indeed be a determinant factor for the development of an adaptive or
maladaptive phenotype (152). Indeed, even the exercise benefits seem to be time-

dependent since prolonged bouts of exercise performed for long periods have been
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associated with the development of several features of maladaptive phenotypes such
as cardiac dysfunction, fibrosis and cellular death (4, 5, 13, 42, 109, 186, 192, 201,
261, 263). Altogether, these data suggest that cardiac adaptation or maladaptation can
be a consequence of the severity and/or duration of the stimuli together with improper
recovery, independently of the stimuli’s nature. When the imposed stress is too severe
or prolonged, the cells might not be able to recover homeostasis, their integrity can be

compromised and cellular death pathways might be favored, progressively

= Increase/stimulate

Normal Osteopontin ~ """ e “ — = decrease/prevents

myofibroblast

Excessive degradation of ECM
Production of ECM proteins 1
4 Normal collagen levels

W TJ:J ,nUnUnJ extracellular space

A SERCA2a expression \ /

PI3K

|

AAkt

GSK-3 Jk AmTOR

l

Protein Synthesis
W Calcineurin
/#E\'

intracellular space

SRl
e e
s
Normal beta/alpha-MHC ratio
. . \ Hypertrophic genes /7
ylation ~ P
) -

i

Figure 3- Chronic intermittent workload induced by dobutamine, promoted cardiac adaptations
(yellow rectangles) that resembled exercise training. These alterations, together with cardiomyocyte
hypertrophy, could underlie the increased tolerance to left ventricular acute pressure overload. Detailed
information is provided in the text. MMP: metalloproteinase; Ca**: calcium; LTCC: L-type calcium
channels; RyR: ryanodine receptor; SERCA: sarcoplasmic reticulum calcium-ATPase; PLN:
phospholamban; PI3K: phosphoinositide 3-kinase; Akt: protein kinase B; GSK-3: glycogen synthase
kinase; mTOR: mammalian target of rapamycin; p-NFAT: phosphorylated nuclear factor of activated T
cells; NFAT: dephosphorylated nuclear factor of activated T cells; MHC: myosin heavy chain.

contributing to maladaptation (40, 75, 137, 138, 171). On its turn, if there is a perfect

match between the stress demands and the cellular responses, pro-survival pathways
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are preferentially activated, an improved homeostatic capacity (increased tolerance)
can be attained (40), and an adaptive phenotype takes place.

After showing that exercise training increased tolerance to acute pressure
overload, we wanted to know if the same would be true against chronic pressure
overload. To accomplish this aim we changed our focus to the RV and used a model
of RV chronic pressure overload induced by monocrotaline (MCT). MCT is a
pyrrolizidine alkaloid found in the plant Crotolaria spectabilis. After being
bioactivated in the liver, its bioactive metabolite selectively injures the vascular
endothelium of the lung and induces an increase in vascular resistance and pulmonary
arterial pressure, with subsequent RV hypertrophy (27, 124, 228). With a dosage of
60 mg/kg, RV pressure overload is observed around 14 days after its administration
(228), and RV hypertrophy progresses to failure and death around day 28 (45, 66, 94,
99, 100). Therefore, we trained rats at different time points of RV pressure overload
(before, during and after its establishment) and evaluated the preventive and
therapeutic roles of exercise training. We hypothesized that exercise training would
act as an upstream modulator of the multiple signaling pathways implicated in RV
dysfunction and failure (20, 31, 45, 66, 98, 131, 163, 209, 216). Our results show that
exercise training performed before (preconditioning), during or after RV chronic
pressure overload establishment prevents from cardiac dysfunction and improves
survival. The underlying mechanisms may be associated with the prevention of
calcium handling abnormalities (128, 220, 265) and alpha to beta MHC shift (96,
200), capillary density preservation (76, 93, 94), decreased neurohumoral activation
(14, 46, 79), collagen deposition and inflammation (2, 139, 142, 176, 222, 268),
preserved mitochondrial function and reduced oxidative damage (2, 217, 235, 253)
that was found in all exercised groups. A schematic overview of these findings is
provided in Figure 4. Our data, together with previous work from other groups (20, 59,
216) suggest that therapies that improve RV function through the modulation of these
pathways may be an interesting strategy for PAH prevention and treatment. The
overall improvements exhibited by those animals that were exercised during or after
RV overload were independent of any pulmonary hypotensive effect of exercise
training. Indeed, animals from these groups showed RV peak systolic pressure values
comparable to their sedentary overloaded counterparts, but without compromise of

cardiac function. From here it is possible to conclude that exercise training provides a
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cardioprotective phenotype that allows the RV to work under overloading conditions
with better tolerance. Similar observations were previously reported in the LV, where
exercise training was demonstrated to prevent cardiac dysfunction in different animal
models of chronic pressure overload, independently of any hypotensive effect (21, 76,
176). Exercise preconditioning (exercise before RV overload) prevented from
significant afterload elevation which, together with previous studies (47, 49, 69, 70),
support the notion that the exercise benefits can be sustained for several weeks after
cessation. Although our data does not provide any explanation for the lower RV
overload observed in this group, it is possible that the four weeks of training that

anticipated MCT administration were sufficient to provide a more resistant vascular
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Figure 4- Exercise training prevents against right ventricular chronic pressure overload damage.
Exercise training induced a series of improvements (yellow rectangles) that collectively were
associated with improved cardiac function. VEGF: vascular endothelial growth factor; ET-1:
endothelin-1; TNF-alpha: tumor necrosis factor-alpha; IL-10: interleukin-10; Ca**: calcium; K*:
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endothelial phenotype, and thus decreased the overload imposed by the vascular
remodeling of the lungs. Indeed, increased endothelial progenitor cells induced by
exercise training were associated with enhanced endothelial regenerative capacity
(144, 149, 218), and inhibition of the formation of neointima after carotid artery

injury (144).
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5. MAIN CONCLUSIONS

Considering the overall findings supported by our studies, the main conclusions

that derive from them and that we would like to highlight are:

1. Exercise training improved cardiac tolerance to sustained acute pressure
overload and prevented from cardiac dysfunction observed in sedentary
animals.

2. The improved hemodynamic response of exercised animals was associated
with less ultra-structural damage of the cardiomyocytes, lower expression
of NF-kB and active form of caspase-3 and decreased oxidative damage to
cardiac proteins.

3. Mitochondria were found to be an early and preferential target of oxidative
damage induced by acute pressure overload, with aconitate hydratase and
ATP synthase alpha subunit identified as the proteins more susceptible to
carbonilation and ATP synthase beta as the more prone to nitration.

4. Tolerance to acute pressure overload reflected by improved functional,
structural and molecular integrity may be related with the exercise-induced
adaptive phenotype.

5. Chronic intermittent cardiac overload induced by beta-adrenergic
stimulation induced a cardiac phenotype that resembled several features
the one induced by exercise training, namely similar MHC isoforms
composition, Akt/mTOR activation, increased SERCA2a expression and
mitochondrial activity. Like in exercise training, cardiomyocyte
hypertrophy was not accompanied by fibrosis or osteopontin-1 and

calcineurin up-regulation.
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6.

10.

Similarly to exercise training, chronic intermittent cardiac overload
induced by beta-adrenergic stimulation increased the cardiac tolerance to
an acute sustained pressure overload, preventing cardiac dysfunction.
Besides the nature, the duration and the magnitude of the stimuli may be
determinant for the development of an adaptive or maladaptive cardiac
phenotype.

Exercise preconditioning, as well as exercise performed during or after the
establishment of RV chronic pressure overload secondary to MCT-induced
PAH averts RV dysfunction and improves survival. Exercise training
seems to provide a cardioprotective phenotype that allows the RV to work
under overloading conditions with better tolerance.

The cardioprotective effects of exercise training seem to persist for several
weeks after exercise cessation.

Exercise can act as an upstream modulator of several pathways activated
in the RV during PAH. The benefits of exercise training may be associated
with the prevention of calcium handling disturbances, alpha to beta-MHC
shift, decreased neurohumoral activation, collagen deposition and
inflammation and preserved oxidative phosphorylation through the

reduction of mitochondrial oxidative damage.
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